128 research outputs found

    Climate change threatens the most biodiverse regions of Mexico

    Get PDF
    International audienceClimate change threatens Earth's biodiversity, although its impacts are variable and depend on the capacity of species and ecosystems to cope with the magnitude and speed of change. Natural protected areas (NPAs) constitute potential refugia for species' persistence and for sustaining the provisioning of ecosystem services. Biosphere reserves are NPAs that are less altered by human actions and provide habitat to endemic, threatened or endangered species. Here, we aim to evaluate the threat imposed by climate change on the network of biosphere reserves in Mexico. Focusing on five bioclimatic variables, we computed the climatic space – measured as an n-dimensional hypervolume – of 40 NPAs. Increases in temperature are predicted for all NPAs by 2050, whereas decreases in annual rainfall are predicted for 30 NPAs. By 2050, 31 NPAs that provide habitat to 22,866 recorded species are predicted to lose 100% of their baseline climatic space, shifting to completely novel climates. On average, the other nine NPAs are predicted to lose 55.7% (SD = 26.7%) of their baseline climatic space, while 54.5% (SD = 32.5%) of the future climatic space will be novel. Seventeen NPAs may lose climate variability (homogenization), decreasing species' niches. The extent to which non-analogue conditions will remain within the tolerance of species and ecosystems is currently unknown. Finally, we propose a vulnerability index to categorise NPAs based on their loss of existing climatic space, total geographic area, species richness, and uniqueness of species composition, finding los Tuxtlas and Tiburon Ballena as the most and least vulnerable NPAs, respectively

    Fire and climate: contrasting pressures on tropical Andean timberline species

    Get PDF
    Department of Biological Sciences; Florida Institute of Technology; Melbourne FL USA Department of Biological Sciences; Florida Institute of Technology; Melbourne FL USA Department of Biological Sciences; Florida Institute of Technology; Melbourne FL USA Geography, College of Life & Environmental Sciences; University of Exeter; Exeter UK Department of Biological Sciences; Florida Institute of Technology; Melbourne FL USA CEPSAR; The Open University; Milton Keynes UK Instituto de Geología; Universidad Nacional Autónoma de México; Ciudad Universitaria; Mexico City Mexico Department of Forest and Soil Sciences; University of Natural Resources and Life Sciences Vienna; Vienna Austria Department of Biology and Center for Energy; Environment and Sustainability; Wake Forest University; Winston Salem NC USACopyright © 2015 John Wiley & Sons Ltd.Aim: The aim was to test competing hypotheses regarding migration of the Andean timberline within the last 2000 years. Location: The upper forest limit in Manu National Park, Peru. Methods: A randomized stratified design provided 21 soil profiles from forested sites just below the timberline, 15 from puna grassland sites just above the timberline and 15 from the transitional habitat at the puna–forest boundary. From each profile a surface sample (hereafter modern) and a sample from the base of the organic horizon (hereafter historical) were collected. Pollen and charcoal were analysed from the modern and historical layers of the 51 soil profiles. A chronological framework was provided by 24 14C dates. Data were ordinated as modern and historical groups and the temporal trends illustrated by Procrustes rotation. Results: The organic layer from the soil profiles represented the last 600–2000 years. Fire was much more abundant in all habitat types (puna, transitional and forested) in the modern compared with the historical groups. Samples that had historically been in puna just above the timberline showed encroachment by woody species. Samples that had been forested were still classified as forest but their composition had become more transitional. Sites that were transitional appeared to represent a new or expanded class of sites that was far less abundant historically. Main conclusions: Our results are consistent with ongoing warming causing an upslope migration of species, although not necessarily of the timberline. Weedy fire-tolerant species are spreading upslope, creating a transitional forest, softening the boundary between forest and puna. Simultaneously, fire introduced to improve grazing outside the park has increasingly penetrated the forest and is causing the upper timberline to shift towards more fire-tolerant and weedy species. Consequently, both the form of the ecotone between forest and grassland and the species composition of these forests is changing and is expected to continue to change, representing a shifting baseline for what is considered to be natural.Gordon and Betty Moore Foundation Andes-to-Amazon programmeBlue Moon FundNational Science Foundatio

    Modeling streamflow response to persistent drought in a coastal tropical mountainous watershed, Sierra Nevada de Santa Marta, Colombia

    Get PDF
    Droughts constitute natural hazards that affect water supply for ecosystems and human livelihoods. In 2013-2016, the Caribbean experienced the worst drought since the 1950s, and climate projections for the southern Caribbean predict less rainfall by the end of the 21st century. We assessed streamflow response to drought for a watershed in the Colombian Caribbean by analyzing the effects of drought length and land cover on streamflow recovery. We generated a calibrated SWAT model and created annual and monthly drought scenarios from rainfall records. We used our model to predict water yield for selected land covers (wet forest, shade coffee, shrub, and dry forest) under drought conditions. Annual scenarios resulted in water yield reductions of ~15 mm month -1 (wet forest, coffee, and shrub) and 5 mm month -1 (dry forest) for the first month after a two-year drought. Maximum water yield reductions for monthly scenarios occurred after a 10-month drought and were ~100 mm month -1 (wet forest, coffee, and shrub) and 20 mm month -1 (dry forest). Streamflow recovered within nine months (annual scenarios), and two to eight months (monthly scenarios) after drought termination. Drought response seems to be conditioned by climatic factors (rainfall seasonality and spatial variability) and catchment properties

    Paleoclimate support for a persistent dry island effect in the Colombian Andes during the last 4700 years

    Get PDF
    We investigated middle- and late-Holocene hydroclimate patterns in the Colombian Andes using indicators of watershed erosion (lithic abundance), precipitation intensity (% silt), lake-level variability (organic carbon and nitrogen, % sand, and diatoms), and fire frequency (fossil charcoal) from a ~4700-year-long sediment archive from Laguna de Ubaque, a small sub-alpine lake on the eastern flank of the eastern Colombian Andes. Our results indicate reduced precipitation, low lake levels, and increased fire occurrence at Ubaque between 4700 and 3500 cal. yr BP (hereafter BP). Precipitation and lake levels increased abruptly while fire occurrence decreased between 3500 and 2100 BP, with the exception of a 300-year dry phase between 2800 and 2500 BP. Although wetter than the 4700–3500 BP interval, precipitation decreased, lake levels fell, and fire occurrence increased after 2100 BP, but with high-frequency variability. Comparison of the Ubaque results with other Colombian paleoclimate records (e.g. Lakes Fúquene and La Cocha) supports an antiphase pattern of precipitation between the high/interior Andes and frontal slope sites. This spatial pattern of variability is consistent with modern responses to the changes in terrestrial atmospheric convection associated with the so-called ‘dry island’ effect. Further comparison with paleoclimate records from Venezuela suggests that the millennial trend toward increasing frontal slope precipitation is consistent with orbitally induced increases in Andean atmospheric convection. Sub-orbital dry island–like hydroclimate variability suggests that other mechanisms that affect Northern Hemisphere convection may act to enhance or diminish this effect on centennial and shorter timescales

    Long-Term Vegetation Dynamics in a Megadiverse Hotspot: The Ice-Age Record of a Pre-montane Forest of Central Ecuador.

    Get PDF
    Tropical ecosystems play a key role in many aspects of Earth system dynamics currently of global concern, including carbon sequestration and biodiversity. To accurately understand complex tropical systems it is necessary to parameterise key ecological aspects, such as rates of change (RoC), species turnover, dynamism, resilience, or stability. To obtain a long-term (>50 years) perspective on these ecological aspects we must turn to the fossil record. However, compared to temperate zones, collecting continuous sedimentary archives in the lowland tropics is often difficult due to the active landscape processes, with potentially frequent volcanic, tectonic, and/or fluvial events confounding sediment deposition, preservation, and recovery. Consequently, the nature, and drivers, of vegetation dynamics during the last glacial are barely known from many non-montane tropical landscapes. One of the first lowland Amazonian locations from which palaeoecological data were obtained was an outcrop near Mera (Ecuador). Mera was discovered, and analysed, by Paul Colinvaux in the 1980s, but his interpretation of the data as indicative of a forested glacial period were criticised based on the ecology and age control. Here we present new palaeoecological data from a lake located less than 10 km away from Mera. Sediment cores raised from Laguna Pindo (1250 masl; 1°27'S, 78°05'W) have been shown to span the late last glacial period [50-13 cal kyr BP (calibrated kiloyears before present)]. The palaeoecological information obtained from Laguna Pindo indicate that the region was characterised by a relatively stable plant community, formed by taxa nowadays common at both mid and high elevations. was the dominant taxon until around 30 cal kyr BP, when it was replaced by , Asteraceae and among other taxa. Heat intolerant taxa including , , and peaked around the onset of the Last Glacial Maximum (c. 21 cal kyr BP). The results obtained from Laguna Pindo support Colinvaux's hypothesis that glacial cooling resulted in a reshuffling of taxa in the region but did not lead to a loss of the forest structure. Wide tolerances of the plant species occurring to glacial temperature range and cloud formation have been suggested to explain Pindo forest stability. This scenario is radically different than the present situation, so vulnerability of the tropical pre-montane forest is highlighted to be increased in the next decades

    Tropical freshwater ostracodes as environmental indicators across an altitude gradient in Guatemala and Mexico

    Get PDF
    Ostracodes are bivalve microcrustaceans with calcium carbonate shells that preserve well in lake sediment. They are very sensitive to environmental variables and are therefore powerful tools in paleoclimate and paleoenvironmental studies that cover time periods from decades to millions of years. Detailed knowledge of species ecological preferences and robust taxonomy are prerequisites for such studies. Such information, however, is still lacking for many areas of the world, including the Neotropics. Previous studies in the northern Neotropics were conducted mainly in the karst lowlands of the Yucatán Peninsula, but higher-altitude areas remained relatively poorly investigated. This study was designed to expand our knowledge of the modern, Neotropical freshwater ostracode fauna, across an altitudinal gradient from the karst lakes in the lowlands of El Petén, Guatemala (~100 - 500 m asl), to the mid-elevation water bodies of the Lacandón forest (~500 - 1000 m asl), to the higher-altitude lakes of Montebello, Chiapas, México (~1000 - 1500 m asl). Eighteen ostracode species were identified in 24 lakes. Ostracodes were absent in Lakes Amarillo and Lacandón (mid-altitude), and San Diego (lowlands). Statistical analysis indicated that the most abundant species, Cypridopsis vidua, Cytheridella ilosvayi, Pseudocandona antillana, and Darwinula stevensoni have a continuous distribution along the entire altitudinal gradient. Other species display more restricted distributions, determined by temperature, precipitation and conductivity. For example, Eucypris sp. is restricted to the lowlands, Vestalenula sp. and Cypria sp. were found only at middle elevations, and a Cyprididae species was restricted to the highlands. Species diversity is slightly greater in warm lakes at middle altitudes (Haverage = 1.09) than in water bodies in the lowlands (Haverage = 0.94) and in cooler lakes in the highlands (Haverage = 0.94). LOESS regressions provided ecological preference information for the four most frequent and widely distributed species, with respect to temperature, conductivity, bicarbonate (HCO3-) concentration, precipitation, and pH. Cypria petenensis, Heterocypris punctata, and Paracythereis opesta display higher abundances in lowland lakes, whereas, Cytheridella ilosvayi, and Pseudocandona antillana prefer lowland and mid-elevation lakes. Environmental conditions in the higher-elevation lakes of Montebello favor the presence of Darwinula stevensoni. Such quantitative ecological information will improve ostracode-based paleoenvironmental reconstructions in southern México and northern Guatemala, and our approach serves as a model for future paleoecological studies that employ other aquatic bioindicators, such as testate amoebae, cladocerans, and chironomids

    Widespread reforestation before European influence on Amazonia

    Get PDF
    An estimated 90-95% of indigenous people in Amazonia died following European Contact. This population collapse is postulated to have caused decreases in atmospheric CO2 concentrations at c. 1610 CE, as a result of a wave of land abandonment in the wake of disease, slavery and warfare, whereby the attendant reversion to forest significantly increased terrestrial carbon sequestration. Based on 39 Amazonian fossil pollen records, we show that there was no synchronous reforestation event associated with such an atmospheric CO2 response following European arrival in Amazonia. Instead, we find that, at most sites, land abandonment and forest regrowth began c. 300 - 600 years before European arrival. Pre-European pandemics, social strife or environmental change may have contributed to these early site abandonments and ecological shifts

    Climatic variability over the last 30,000 years recorded in La Piscina de Yuriria, a Central Mexican Crater lake

    Get PDF
    The Trans-Mexican Volcanic Belt provides an excellent setting for reconstruction of late Quaternary climate from different natural archives. Moreover human impact on the landscape since the mid Holocene provides a good opportunity to investigate the complex interplay of natural and anthropogenic forcing of landscape change. However despite the wealth of records, understanding of the environmental history of the region and its wider significance for climate change across the northern neotropics remains incomplete. We present a radiocarbon-dated, multiple-proxy (sedimentology, sedimentary geochemistry, ostracods, diatoms, stable isotopes) record of climatic and environmental change based on the lacustrine sediments from La Piscina de Yuriria, a hydrologically-closed volcanic crater in the northern TMVB. Much of the last glacial interval was characterised by low effective moisture associated with a weakened North American Monsoon (NAM) although the interval from 30,000 to 27,500 aBP experienced abrupt changes in rainfall. The period corresponding to the late glacial stadial was also dry and the lake may have dried out at this time. There was a change to wetter but variable conditions during the early Holocene as the NAM strengthened. Progressive drying during the later Holocene was accompanied by phases of catchment disturbance, which were partly the result of human impact
    • …
    corecore