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Abstract: Droughts constitute natural hazards that affect water supply for ecosystems and human
livelihoods. In 2013–2016, the Caribbean experienced the worst drought since the 1950s, and climate
projections for the southern Caribbean predict less rainfall by the end of the 21st century. We assessed
streamflow response to drought for a watershed in the Colombian Caribbean by analyzing the
effects of drought length and land cover on streamflow recovery. We generated a calibrated SWAT
model and created annual and monthly drought scenarios from rainfall records. We used our model
to predict water yield for selected land covers (wet forest, shade coffee, shrub, and dry forest)
under drought conditions. Annual scenarios resulted in water yield reductions of ~15 mm month−1

(wet forest, coffee, and shrub) and 5 mm month−1 (dry forest) for the first month after a two-year
drought. Maximum water yield reductions for monthly scenarios occurred after a 10-month drought
and were ~100 mm month−1 (wet forest, coffee, and shrub) and 20 mm month−1 (dry forest).
Streamflow recovered within nine months (annual scenarios), and two to eight months (monthly
scenarios) after drought termination. Drought response seems to be conditioned by climatic factors
(rainfall seasonality and spatial variability) and catchment properties.

Keywords: drought; seasonal tropics; SWAT; SWAT-T; modeling

1. Introduction

In the past centuries, human activities have been the principal factor driving environmental
and climate change [1]. For coastal regions such as the Caribbean, these changes include land
use change, extreme weather conditions, rising sea levels, increasing temperatures, and changes
in precipitation patterns [2] which can have a detrimental effect on water supply. Within this context,
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coastal watersheds are critical in many regions of tropical America and the Caribbean [3]. Although the
region as a whole has abundant freshwater resources, there are large disparities in water availability
per person [3]. In terms of climate projections, models for the Caribbean predict changes in seasonal
and annual precipitation, with a decrease in annual and summer (JJA) precipitation, and a slight
increase in winter (DJF) precipitation by the end of the century [2,4,5]. The northern Caribbean is
predicted to have more intense rainfall, whereas the southern Caribbean will experience less rainfall
by the end of the century [6]. Temperature projections include a 1–5 ◦C increase by the end of the
century [6–8]. In 2013–2016, the Caribbean experienced the worst drought since the 1950s related to
El Niño [9]. Although the analysis of Herrera et al. (2018) [9] was limited to the Caribbean islands,
it suggested that the projected drying trend for the region is already underway, with anthropogenic
warming contributing to both its severity and spatial extent.

Drought, defined as “sustained period of below-normal water availability”, is classified as
meteorological drought (i.e., rainfall deficit), soil moisture drought, hydrological drought (surface
and subsurface water deficits) and socioeconomic drought (impacts of the above) [10]. Meteorological
droughts may propagate to the soil and surface/subsurface components of the hydrologic system,
affecting water supply for the agriculture, energy, industry, domestic, navigation, recreation sectors,
as well as aquatic and terrestrial ecosystems [10]. Droughts tend to affect a large number of people,
as they develop over large geographical areas and during extended periods (i.e., months to years).
In addition, drought occurrence and development is complex due to the interaction of multiple natural
and anthropogenic factors, including inter- and intra-annual climate variability, catchment geology
and soil characteristics, vegetation and land use, and water extraction practices, all of which can either
aggravate or alleviate their effects [11,12]. With regard to climate, regions in warm seasonal climates
are particularly susceptible to droughts as rainfall deficits during the wet season may translate into a
hydrological multi-year drought due to the low probability of recovery during the dry season [13].

The Colombian Caribbean region, located between the Caribbean Sea and the Andes mountains,
is characterized by a warm seasonal climate that transitions into dry conditions to the north, and to wet
conditions to the south, near the Panama border. This region supports around 20% of the country´s total
population (~50 million in 2018) and exhibits a profound socioeconomic disparity when compared to
the central Andean region [14]. Within the Colombian Caribbean, there is the Sierra Nevada de Santa
Marta Massif (SNSM), a steep coastal triangular mountain range that rises to 5775 meters above sea
level (masl) within 42 km from the coast (Figure 1). Due to its elevation gradient and proximity to
the coast, it possesses nine types of vegetation biomes, at least 600 botanical genera, and no fewer
than 3000 species of higher plants with a high level of endemism in biomes above 1000 masl [15].
The massif is drained by rivers that are critical for urban water supply (~1.5 million people), large
and small-scale agriculture, fishing, tourism, and mining. Downscaled climate projections for the
region show contradictory results for precipitation, with predictions for the 2011–2040 period ranging
from 10–40% increase to 20–40% decrease relative to historic data [16,17]. Historical records show
mixed results for trends in discharge and precipitation, and an overall increase in temperature on the
order of 0.3 ◦C to 0.5 ◦C per decade [18–23]. Droughts in this region are exacerbated by strong rainfall
seasonality and affect domestic water supply, agricultural and cattle production, fisheries (e.g., through
increased salinity in coastal lagoons), fire occurrence, and the prevalence of certain diseases [24].
For instance, during the 2014–2016 drought, the northern Colombian Caribbean experienced the largest
decrease in rainfall (44–70%) and widespread water availability issues, with > 80% of municipalities
affected [24].

In this work, we analyzed streamflow response to persistent meteorological drought for a
~300 km2 watershed in the Colombian Caribbean region. We use the term ‘streamflow recovery’ to
refer to streamflow levels returning to average conditions. Our specific objectives were to: (1) evaluate
how meteorological drought length affects streamflow recovery, and (2) assess the effect of land
cover on streamflow recovery. To do this, we used a hydrologic model (SWAT) combined with
synthetic rainfall series representing droughts with increasing lengths, to predict water yield from
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different land covers. This paper is structured as follows. First, we present a description of our study
area, hydrologic model setup and definition of drought scenarios. We then present the results of
the hydrologic model calibration and validation, and the effects of meteorological drought on water
yield for selected land covers in the watershed. We then discuss our findings and finish with some
concluding remarks.
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Figure 1. (a) Regional location of the study area showing the Santa Marta Massif (SNSM) in northern
Colombia; (b) Río Frío watershed on the southwestern flank of the SNSM, climate stations used for
daily temperature, precipitation and discharge records, and major nearby city (Santa Marta). (c) Río Frío
watershed land cover and subbasins. Land cover codes are: FRST (wet forest), FRSD (tropical dry
forest), RNGB (shrub or secondary growth), COFF (coffee), RNGE (paramo grassland), PAST (pasture),
BANA (banana crops), and BARR (bare).

2. Methods

Our methods involved (1) setup, calibration and validation of the SWAT hydrologic model,
(2) calculation of synthetic rainfall series to assess streamflow response to persistent dry conditions,
(3) execution of the calibrated model with multiple synthetic rainfall series, and (4) analysis of model
outputs (Figure 2). The following sections present a description of our study area and detailed methods.
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Figure 2. Summary of steps followed, including model setup, calibration and validation, generation of
synthetic rainfall series, and simulation of drought conditions. Drought series were generated at
two time scales, annual (i.e., dry years selected as those with annual precipitation below the 10th
percentile for each station), and monthly (i.e., dry months selected as the driest respective month in the
historic record for each station). Reference series refer to years with average rainfall conditions (45th to
55th percentile).

2.1. Study Site

The Río Frío watershed is located on the southwestern slopes of the SNSM (Figure 1).
The watershed covers an area of ~300 km2 with elevation ranging between 30 to 3400 masl on steep
terrain with mean slopes of 60%. Downstream from the massif, the Río Frío runs on recent fluvial and
marine lowland deposits, until it reaches the Santa Marta Lagoon system, the largest coastal lagoon in
the country and part of the RAMSAR wetland convention due to its ecological importance (Figure 1).
Currently, the river runs dry before reaching the lagoon as most of its water is used for irrigation in
the lowlands.

Regional climate is characterized by latitudinal and elevation gradients, as well as by a strong
intra- and inter-annual variability. Annual precipitation on the southwestern flank of the massif
increases from north to south, and from lower to higher elevations. For instance, annual precipitation
totals ~450 mm near the city of Santa Marta (Figure 1), compared to ~1400 mm further south
(Prado Sevilla station, Figure 1). Intra-annual seasonality is controlled by the meridional movement of
the Intertropical Convergence Zone (ITCZ) and related northeasterly trade winds. There is a marked
dry season from December through March which transitions into a wet season running from May
through November with a short drier season or ‘veranillo’ from mid-June through mid-August.
Streamflow varies accordingly, i.e., streamflow records for the Río Frío (1967–2014) show minimum
mean monthly discharge values from January through April (~5.6 m3s−1), and maximum values from
August through November (~21.4 m3s−1). The contribution of baseflow to total streamflow also varies
throughout the year, with maximum values during the dry season (e.g., mean of 82% in January) and
minimum values during the wet season (e.g., mean of 62% in September). Interannual rainfall and
discharge variability is related to several ocean-atmosphere oscillations, including El Niño/Southern
Oscillation (ENSO), the Tropical North Atlantic index (TNA), the Atlantic Meridional Oscillation
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(AMO) and Pacific Decadal Oscillation (PDO) [25]. Annual mean temperature at sea level is 28 ◦C and
decreases to 14 ◦C at 2200 masl.

Watershed relief is characterized by long and steep slopes developed on metamorphic and igneous
rocks, with 70% of the watershed on slopes > 50%. Soils in the watershed are mostly shallow (<0.5 m)
to moderately deep (~1.5 m) Inceptisols and Entisols with medium textures (i.e., loam to sandy loam)
and some fine textured horizons. Soils are moderately to well drained, except where the bedrock is
close to the surface [26]. Native vegetation varied according to precipitation amount and seasonality,
and elevation [27]. At low elevations (0 to ~1200 masl), vegetation cover included lowland humid
tropical forests, tropical dry forests, and xerophytic and sub-xerophytic scrub. Subandean forests
covered the mid-elevations (1300 to 2000–2300 masl), while andean forests covered elevations up to
3300–3500 masl. Higher elevations were dominated by paramo grasslands up to ~4800 masl. Most of
the native vegetation, however, has been transformed. Current land use/land cover in the basin is
the result of dynamic social and economic processes that have taken place since colonial times [27].
With regards to coffee, the first accounts of coffee plantations in the region date back to the 1850s, but
coffee expansion did not take place until the 1940s and 1950s, with the arrival of peasants fleeing from
political violence in the central Andes. Forest cover in the SNSM has also been dynamic as a result of
multiple processes, including forest clearing by colonos (1950s onwards) and cultivation of illegal
crops. Specifically, the international trade of marijuana (Cannabis sativa) during the 1970s brought
large-scale deforestation to the SNSM, as it became a prime spot for cultivation, with an estimated
70% of its forests (~150,000 ha) felled between 1975 and 1980 [27]. Forest recovery within the basin
seems to have taken place after the mid-1980s due to a lower demand for marijuana in the international
markets, and the arrival of illegal groups [28]. The extent of deforestation from that period within
the Río Frío basin is uncertain but local inhabitants confirm that large patches of forest in the upper
basin were cleared (Meza, pers. comm.). Current land use/land cover includes a mosaic of forests
at different successional stages, secondary growth, pasture for cattle, and crops (mostly coffee and
subsistence annual crops). Paramo grasslands are found above ~3100 masl [29], while rapidly receding
glaciers are found above 4900–5100 masl [30].

2.2. Hydrologic Model

We used the SWAT (soil and water assessment tool) hydrologic model (rev 627), to represent
the main hydrologic processes within the watershed. SWAT is a continuous-time, process-based,
semi-distributed model that simulates the major water balance components for each subwatershed
within a watershed. Further model details can be found in [31]. Since its release in the early 1990s,
SWAT has been extensively used to assess multiple aspects of water resource management in river
basins, such as non-point source pollution, land cover/land use changes, soil erosion, alternative
management practices and climate change ([32] and references therein). However, examples from
tropical America are limited (e.g., [33,34]). Our model selection was based on considerations such as
its ability to represent the physical processes associated with water movement, support documentation
and additional software for model calibration and scenario simulation.

2.2.1. Data Sources and Processing

Input data for SWAT were gathered from a variety of sources (Table 1) and were processed as
follows. Digital topographic maps with a scale of 1:25,000 from the National Geographic Institute
(IGAC) were used to generate a digital elevation model (DEM). Contour interval was 25 m up to
600 masl, and 50 m above that elevation. The DEM was generated using the GRASS module within
QGIS v2.18 [35], with an output spatial resolution of 30 m.

Digital soil mapping units were obtained from the national ecosystems map [29]. Soil profile
properties required by SWAT were gathered from the state´s soil survey [26]. Properties not included
in the soil survey were calculated as follows. Saturated soil hydraulic conductivity was estimated
from soil texture and organic matter content [36]. Bulk density and available water capacity were
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missing for certain soil units, and were also calculated using the relationships from [36]. Soil erodibility
was estimated with the software KUERY v1.4 [37] based on the soil´s texture, organic matter content,
and regional climate [38]. For each soil unit, we compared the distribution´s mean and modal values,
selecting the higher erodibility of the two values. Soil albedo was estimated from the soil´s color [39].
Most soil mapping units within the watershed were associations (i.e., two or more components at the
subgroup level), while some were consociations. For the former, we used the properties of the most
extensive unit, while for the latter we used the properties of the dominant component.

Land cover data were generated from a Landsat 8 image from January 2015. The land cover
classification was performed using a random forest classification [40]. Prior to classification,
the Landsat image was atmospherically corrected using the Cos(t) model [41] available in IDRISI
v17.02 (Clark Labs). Subsequently, bands 2 through 7 from the atmospherically corrected image were
subsetted to the area of interest. The following ancillary raster data were generated to aid in the
classification: (1) normalized difference vegetation index (NDVI), (2) ecosystems from the national
ecosystem map [29], (3) topographic data including elevation, slope, aspect, and hillshade derived
from the DEM, (4) coffee elevation mask where pixels with elevations between 800 and 1800 masl were
assigned a value of 1 and others a value of zero, (5) distance data including distance to the ocean and
coastal lagoons, distance to major cities and distance to towns. All rasters were subsetted and aligned
to the Landsat subsetted bands, and were generated to match the Landsat spatial resolution. A set of
training points was generated for each land cover class, with a mininum of 30 points per class except
for aquatic vegetation which was limited to small areas and had only 24 training sites. For each training
point, values of all Landsat subsetted bands and ancillary data were extracted, as well as its X and
Y coordinates. Spatial data processing was performed in IDRISI and ArcGIS (ESRI). The final point
dataset was used as input for the random forest R package [42]. This tool generates a large number of
decision trees (i.e., forest) based on random subsets of the training samples. Subsequently, each pixel in
need of classification is put down each tree and assigned a class. The final class is selected as the most
common, or the one having the most votes. A 10-fold cross validation was performed internally during
the generation of the decision trees [43]. Final land cover classes were assigned to the equivalent
SWAT land cover code as follows: Subandean and Andean forest (referred to as wet forest from
hereafter) to FRST, tropical dry forest to FRSD, coffee to COFF, shrub or secondary growth to RNGB,
pasture to PAST, paramo grassland to RNGE, banana crops to BANA, and bare to BARR (codes used
from hereafter).

Daily precipitation and temperature data from nearby stations (<15 km), as well as daily discharge
data at the watershed outlet, were obtained from the National Environmental Institute (IDEAM,
Figure 1, Supplementary Materials S1). Finally, leaf area index (LAI from hereafter) data from
MODIS were used during the calibration stage to modify SWAT´s default vegetation growth cycles
(see Section 2.2.3 below) [44].

Table 1. SWAT input data sources and characteristics. For details on rainfall and temperature stations
refer to Supplementary Materials S1.

Data Source 1 Relevant Characteristics

Elevation IGAC 1:25,000 scale
Soil mapping units [29] 1:100,000 scale

Soil properties [26] Soil profiles from state’s soil survey
Land cover Landsat 8 image from 11 January 2015 30 m spatial resolution

Leaf area index

MODIS LAI products
MOD15A2Hv006 (January 2002–June 2002)

MCD15A2Hv006
(July 2002–December 2008) [44]

500 m spatial resolution,
8-day composites

Precipitation IDEAM Total daily precipitation
Daily maximum and

minimum temperature IDEAM Maximum and minimum
daily temperature

Discharge IDEAM Average daily discharge
Period 1968–2015

1 IGAC: National Geographic Institute (Instituto Geográfico Agustín Codazzi), IDEAM: National Environmental Institute.
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2.2.2. Model Setup

We constructed the SWAT model using the ArcSWAT extension (v2012.10_0.15) within ArcGIS.
The watershed was divided into 15 subbasins (Figure 1) spanning areas of 26–4497 ha, using a minimum
flow accumulation area of 1500 ha. Subbasins were further divided into hydrologic response units
(HRUs), each defined as a particular combination of land cover class, soil type, and slope, using the
soil data and Landsat-derived land covers described in Section 2.2.1, and two slope classes separated
by a threshold of 36%. After further specifying a minimum threshold area of 1 ha for land cover, soil,
and slope, the subbasins were finally divided into a total of 271 HRUs constituting 99.9% of the total
watershed area.

We forced SWAT using daily precipitation from 4 climate stations within ~12 km of the watershed,
and daily maximum and minimum air temperature from 3 stations within ~15 km of the watershed
(Figure 1, Supplementary Materials S1). Statistics from these stations were used in SWAT’s internal
WGENX weather generator to estimate daily solar radiation, and relative humidity, needed for
potential ET (Priestly–Taylor method selected), and for gap-filling of missing precipitation and
temperature data. Additional climate stations were used to assign subbasin-values of precipitation
lapse rate (Supplementary Materials S1 and S2) as follows: (1) 500 mm km−1 from 0–600 masl,
and (2) 262 mm km−1 from 600–2000 masl. Temperature lapse rate was found to be −6.3 ◦C km−1

(Supplementary Materials S1 and S2).

2.2.3. Model Calibration and Validation

We performed model calibration/validation and sensitivity/uncertainty analysis using the
sequential uncertainty fitting (SUFI-2) algorithm [45,46] available in the SWAT-CUP software
package [47]. A key aspect of this algorithm for this study is the prediction of a 95% uncertainty
(95PPU) band found through an iterative calibration process. Our process of calibrating and validating
models followed these steps (details in Supplementary Materials S2):

• Step 1, Data quality assurance and control. Daily observed values of stream discharge were
screened for quality. Values that were both quality-flagged and considered outliers were removed
from the record, and remaining values used to construct monthly discharge for use in simulation
and analysis.

• Step 2, Simulation period definition. We selected calibration and validation periods that included
wet, average and dry years, and had a relatively low number of quality flags. Accordingly,
we defined 2002–2008 as the calibration period, with a three-year warm-up from 1999–2001,
and 1985–1991 as the validation period, with a three-year warm-up from 1982–1984.

• Step 3, Determination of flow-path goals. To identify aspects of the modeled flow paths that
needed improvement (hereafter, “flow-path goals”), we performed an initial comparison of
literature-based observations to the following outputs from SWAT in its default configuration:
fraction of total runoff as baseflow, calculated from daily discharge using a baseflow filter
(https://engineering.purdue.edu/mapserve/WHAT/), ratios of total ET/total precipitation and
surface runoff/total streamflow as measured in the central Colombian Andes [48–50]. Based on
this comparison, we determined that the calibration process should, relative to SWAT defaults,
decrease total runoff and increase total baseflow and ET.

• Step 4, SWAT calibration of LAI. We found that the default configuration of SWAT provided
a poor representation of LAI dynamics. We therefore calibrated SWAT-simulated LAI to
MODIS-derived, eight-day LAI composites using the SWAT-T module for tropical vegetation
growth [51,52]. This SWAT module has been shown to improve the representation of shifts
between vegetation dormancy and growth in tropical regions by using soil moisture, rather
than day-length, to represent important phenological thresholds. For more information,
see Supplementary Materials S3.

https://engineering.purdue.edu/mapserve/WHAT/
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• Step 5, Sensitivity analysis. To identify important model parameters to estimate via calibration,
we performed a global sensitivity analysis of monthly simulated streamflow to 16 selected
parameters. This was done by ranking trend p-values for each parameter in question, with other
parameters varying simultaneously, using 500 simulations in SWAT-CUP. We selected the 10 most
influential parameters (listed in Supplementary Materials S4) to estimate via calibration. During
the calibration process described next, we also performed local, one-at-time sensitivity analyses
to select initial parameter ranges for SUFI-2 calibration that were compatible with our flow-path
goals (Step 3, Supplementary Materials S5).

• Step 6, Calibration. We calibrated monthly streamflow with SUFI-2 using 1000 simulations per
iteration (latin hypercube sampling) and the Nash–Sutcliffe (NS) coefficient as the “goal function”
for suggested parameter range-centering. We manually limited parameter ranges input to SUFI-2
by considering our flow-path goals (Step 3), uncertainty statistics (p-value and r-value) [45,46],
and performance criteria [53]. This was done by repeating Steps 5 and 6 on a trial-and-error basis
until acceptable values were attained.

• Step 7, Validation. Once we obtained satisfactory calibration results, we tested the model against
streamflow using the parameter ranges obtained from calibration (steps 4 and 6).

2.3. Scenarios

2.3.1. Synthetic Rainfall Series

We created synthetic rainfall series to represent drought conditions at two different temporal scales
(i.e., annual and monthly) in order to study streamflow response to consecutive dry years (months)
(Figure 2). We generated the annual drought series for each rainfall climate station by (1) selecting
years where annual rainfall was below the 10th percentile, (2) averaging daily rainfall values across
those selected years to generate a ‘dry’ rainfall series of daily data for an entire year. In addition,
an annual reference series was generated for each station by (1) selecting years with annual rainfall
between the 45th to 55th percentiles, (2) averaging daily rainfall values across all years to generate a
‘reference’ series of daily data for an entire year. We then created multiple annual scenarios each of
seven-year standard length and containing between one and four consecutive dry years (Table 2).
We created the monthly synthetic series for each station by (1) selecting the driest month on record
for each month (i.e., driest January, February, etc.), (2) creating a series with increasing number of dry
months, up to 12 consecutive dry months (Table 2).

Table 2. Annual and monthly drought scenarios used to simulate streamflow response in SWAT.

Annual
scenarios Rainfall year 1

1 2 3 4 5 6 7
Reference N N N N N N N

Scen1 D N N N N N N
Scen2 D D N N N N N
Scen3 D D D N N N N
Scen4 D D D D N N N

Monthly
scenarios Rainfall month 1

1 2 3 4 5 6 7 8 9 10 11 12 13 to 84
Reference N N N N N N N N N N N N N

Scen1 D N N N N N N N N N N N N
Scen2 D D N N N N N N N N N N N
Scen3

. . . D D D N N N N N N N N N N

Scen12 D D D D D D D D D D D D N
1 N: ‘normal’, daily series for each station calculated as the daily average for years with annual rainfall between
the 45th and 55th percentiles. D: ‘dry’, for annual scenarios, daily series were calculated as the daily average
from years with annual rainfall below the 10th percentile. For monthly scenarios, daily series were obtained
from the driest month (January, February, etc.) in each station´s record.
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2.3.2. HRU Selection

Prior to running SWAT for each scenario, we selected four HRUs, one for each of the land cover
types calibrated with MODIS data. In order to minimize sources of variability other than the land
cover type, we selected HRUs that had the same rainfall station, soil type, and slope class. We were
able to accomplish this for wet forest, shrub and coffee (HRUs in subbasins 8 and 14, rainfall station
Vista Nieves, Figure 1). All dry forest HRUs, however, were located within subbasin 15 (i.e., lower
basin), and were associated with a different rainfall station (El Enano, Figure 1). For each scenario,
we ran one iteration in SUFI-2 with the same number of simulations (n = 1000) and parameter ranges
as we did for the model calibration in order to represent parameter variability. Simulation output
included water yield for the selected HRUs, defined as the total amount of water leaving the HRU and
entering the main channel at each time step [54].

2.3.3. Statistical Analyses

For each scenario, water yield difference was calculated as the difference between predicted water
yield and water yield under the reference scenario. As predictions were based on 1000 simulations,
1000 values of water yield difference were obtained per month, which were summarized through
probability density functions (PDFs). For each scenario, monthly PDFs were used for assessing the
following aspects:

• Water yield recovery time after drought termination: For each selected HRU, we plotted PDFs
starting in month 1 after drought termination.

• Water yield decrease magnitude as indicated by the PDF median value for each month/scenario
(value of water yield decrease that divides the area under the PDF in half).

• Probability of water yield decrease measured as the area under the PDF and to the left of zero.
It is worth mentioning that high probabilities of water yield reduction do not necessarily imply a
severe reduction (i.e., high probability can be associated with low magnitude).

3. Results

3.1. Land Cover Classification

The overall land cover classification accuracy was 96%, and ranged from minimum values of
85% (shrub) and 88% (bare) to > 90% for all other categories. According to our results, the majority of
the basin´s area (~80%) is under wet forest (45% of the basin, or 136 km2; Figure 1), shrub (19% or
58 km2), or shade coffee (17% or 51 km2). Dry forest is limited to the lower basin, covering 6% of the
total basin area (17 km2), while pasture is distributed in patches along the upper margins of the Rio
Frio (10% or 30 km2). Paramo grasslands (2% or 6 km2) are limited to the upper reaches of the basin,
above 3100–3200 masl.

3.2. SWAT-T leaf Area Index (LAI) Calibration

Seasonality of MODIS LAI series had a bimodal pattern for the major land covers analyzed
(wet forest, coffee, shrub, and dry forest; Figure 3). Wet forest and coffee had peak LAI values (~6.0) in
January and June, and minimum values (3.5 and 5.0) in March and October-November, respectively.
Shrub had maximum LAI values (6.5) in January and June, and minimum values (5.5) in March and
September. Dry forest LAI values peaked at ~4.5 in June and November, and reached minimum values
(1.0) in February. There was no significant long-term trend in LAI for coffee and shrub. Wet forest
LAI showed a decreasing trend until 2004, while dry forest LAI had a decreasing trend starting in
2004. Calibrated SWAT-T mean LAI values were consistent with LAI ranges for each land cover, but
failed to represent LAI´s bimodal seasonality as SWAT-T is capable of modeling only one wet/dry
transition within the year. On the other hand, default SWAT LAI mean values failed to represent both
LAI seasonality and range, for all major land covers (Figure 3).
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Figure 3. Calibrated LAI (area weighted HRU mean) compared to bfast-filtered MODIS values and
default SWAT values for (a) wet forest, (b) coffee, (c) shrub, and (d) dry forest. Calibrated SWAT
results were obtained using the Alemayehu et al. (2017) modified vegetation growth module, while
default SWAT results were obtained using the default vegetation growth algorithm based on day length.
Bfast-filtered MODIS values include the seasonal and trend components of the LAI time series, and
exclude the random component.

3.3. Discharge Calibration and Validation

Our final model had a satisfactory performance rating for both the calibration and validation
periods (Table 3, Figure 4), while the major water flux components were consistent with our flow-path
goals and reference values (Supplementary Materials S5). Final parameter ranges and best-fit parameter
values are included in the Supplementary Materials (Supplementary Materials S6).

Table 3. Selected SWAT model performance statistics for the calibration and validation periods. P- and
r-factors evaluate model uncertainty while the Nash–Sutcliffe coefficient (NS), percent bias (PBIAS)
and “root mean square error-observations standard deviation ratio” (RSR) assess the performance of
the best-fit simulation.

Modeling
Period

Evaluation Statistics
for Model Uncertainty Evaluation Statistics for Best-Fit Simulation 1 Performance

Rating 2

p-factor r-factor NS 1 PBIAS RSR R2

Calibration
(2002–2008) 0.70 0.57 0.79 0.2 0.46 0.79 Very good

Validation
(1985–1991) 0.71 0.60 0.72 −3.4 0.53 0.73 Good

1 NS: Nash–Sutcliffe efficiency (selected objective function), PBIAS: Percent bias, RSR: RMSE-observations standard
deviation ratio, R2: Coefficient of determination. 2 Based on NS, PBIAS and RSR, after [53].
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Figure 4. Total monthly rainfall and average monthly observed and simulated stream discharge for
the calibration (2002–2008) and validation periods (1985–1991). Mean monthly discharge for October
2004 is missing. Total monthly rainfall from SWAT output, calculated from records from four climate
stations (Supplementary Materials S1).

3.4. Scenarios

3.4.1. Annual Drought Scenarios

Results for all annual scenarios were analyzed starting at the time of meteorological drought
termination (i.e., end of “D” periods in Table 2), regardless of drought length. Annual rainfall for
the selected HRUs decreased by ~25% (coffee, shrub, and wet forest) and 40% (dry forest) during
dry years compared to the reference scenario (Figure 5a). Rainfall deficits affected water yield for
all land covers analyzed, and these effects extended for ~9 months after drought termination as
indicated by probabilities higher than 95% of water yield decrease (Figures 6 and 7). Water yield
reductions were largest during the first months after the drought had ceased with median values of
~12 mm month−1 for coffee, shrub and wet forest, and 5 mm month−1 for dry forest during the first
month after a one-year drought (Figure 6). Water yield reduction was largest during the first month
after the drought, reaching median values of ~12 mm month−1 for coffee, shrub, and wet forest,
and 5 mm month−1 for dry forest (Figure 6). The effect of drought length was evidenced by longer
droughts causing larger water yield reductions (i.e., two-year drought compared to one-year drought).
However, there were no significant differences between two-year, three-year and four-year droughts
(Supplementary Materials S7).

The probability of water yield reduction was very high (>0.95) for all land covers during the first
year after the drought (Figure 7 and Supplementary Materials S7). Although probabilities remained
high (~0.8) beyond two years, the magnitude of water yield decrease was very low after month ~12.
With regards to differences between land cover types, water yield decrease had a similar behavior in
wet forest, coffee, and shrub. For instance, median water yield decrease values in these land covers
ranged from ~12 mm month−1 to 4 mm month−1 in the first 12 months after a 1-year drought (Figure 7).
By comparison, water yield decrease in dry forest ranged from ~5 mm month−1 to 2 mm month−1 for
the same period.



Water 2019, 11, 94 12 of 21

Water 2018, 10, x FOR PEER REVIEW  12 of 23 

 

 
Figure 5. Monthly rainfall for selected HRUs under reference and dry conditions for (a) annual and 
(b) monthly scenarios. Numbers within each figure are annual rainfall totals for reference (top) and 
dry (bottom) conditions. Selected coffee, shrub, and wet forest HRUs are associated with the same 
rainfall station (Vista Nieves, Figure1); differences in their rainfall totals are due to differences in 
elevation between their respective subbasins. Dry forest is associated with a different rainfall station 
(El Enano, Figure 1).  

Figure 5. Monthly rainfall for selected HRUs under reference and dry conditions for (a) annual and (b)
monthly scenarios. Numbers within each figure are annual rainfall totals for reference (top) and dry
(bottom) conditions. Selected coffee, shrub, and wet forest HRUs are associated with the same rainfall
station (Vista Nieves, Figure 1); differences in their rainfall totals are due to differences in elevation
between their respective subbasins. Dry forest is associated with a different rainfall station (El Enano,
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Figure 6. Effect of annual drought on water yield (WY) (mm month−1) for the major land cover
types analyzed. Each shaded curve shows a probability density function (PDF) representing the 95%
prediction uncertainty (95PPU) of water yield difference values (drought minus reference scenario) for
a particular annual scenario (i.e., one-year, two-year, three-year, and four-year drought). The vertical
dashed line at zero represents no change relative to the reference scenario, while negative values in the
x-axis represent a decrease in water yield for the drought scenario relative to the reference scenario.
The y-axis represents the number of months after the termination of the meteorological drought.
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 Figure 7. Effect of (a) one-year and (b) two-year meteorological drought on water yield (WY)
(mm month−1) for selected HRUs representative of the study area. For each figure, the left panel shows
the median (continuous line) and 95% probability (minimum value, dashed line) of water yield decrease
from month 1 through month 36 after drought termination. The vertical line at zero represents no
change relative to the reference scenario. Water yield decrease values to the right of the 95% probability
line are unlikely. The right panel shows probabilities of water yield decrease with colors scaled from
higher (red) to lower (blue) probability. Figure for all annual scenarios in Supplementary Materials S7.

3.4.2. Monthly Drought Scenarios

Results for monthly scenarios were analyzed starting in month 1 after meteorological drought
termination (i.e., effects of a one-month drought were assessed starting in month 2, and so on). Rainfall
for the selected HRUs decreased by ~69% (coffee, shrub, and wet forest) and 95% (dry forest) during
the drought year compared to the reference conditions (Figure 5b). Meteorological droughts that
included the initial three months did not have an effect on water yield (Figure 8). Meteorological
drought affected water yield for ~2–8 months after drought termination in coffee, wet forest, and shrub,
as indicated by probabilities > 95% of water yield decrease (Figure 9 and Supplementary Materials S8).
This range was related to land cover type, drought length, and timing. For instance, a 4-month
drought affected wet forest water yield for 3 months after the drought had ceased, while a 10-month
drought affected wet forest water yield for ~8 months after drought termination (Figure 9a,b). Water
yields from dry forest were little affected by drought, except after 5-, 9-, and 10-month droughts.
In addition, the effect was short lived, with water yield recovering within one month after the end of
the meteorological drought.

The magnitude of water yield reduction was affected by both drought length and timing.
For instance, when droughts occurred during months that were usually dry (i.e., months 1, 2, 3, 12,
Figure 5b), their effect was either non-significant (e.g., months 1 through 3) to reduced (e.g., month 12)
(Supplementary Materials S8). On the other hand, droughts that affected wet months (e.g., month 10,
Figure 5b) had the largest effect on water yields. For instance, a 10-month drought resulted in median
water yield decrease values between 90, 108, and 127 mm month−1 for shrub, coffee, and wet forest
respectively, and 20 mm month−1 for dry forest during the first month after drought termination
(Figure 9b). By comparison, a 12-month drought resulted in median water yield decrease values below
50 mm month−1 for all land covers during the first month after the drought had ceased (Figure 9c).
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Water yield decrease probability was very high (>0.9) for five-month and longer droughts in all
land covers (Figure 9). Dry forest had slightly lower probabilities (>0.7) of water yield reductions for a
four-month drought (Figure 9a).Water 2018, 10, x FOR PEER REVIEW  15 of 23 
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Figure 8. Effect of monthly drought on water yield (WY) (mm month−1) for the major land cover
types analyzed. Each shaded curve shows a probability density function (PDF) representing the 95%
prediction uncertainty (95PPU) of water yield difference values (drought minus reference scenario)
for a particular monthly scenario (i.e., one-month drought, two-month drought, etc.). The vertical
dashed line at zero represents no change relative to the reference scenario, while negative values
in the x-axis represent a decrease in water yield for the drought scenario relative to the reference
scenario. The stepladder represents increasing number of dry months, up to 12 consecutive dry months.
For example, at step 7 there are six PDFs that represent the effects of a one-month drought, two-month
drought, etc. up to a six-month drought. The effect of a specific drought can be assessed by following
its PDF in subsequent months. For example, water yield decrease from a four-month drought in coffee
can be assessed by following the blue arrow in the left panel (i.e., the effect of a four-month drought is
first seen in month 5). Similarly, the effect of a six-month drought in coffee can be assessed by following
the orange arrow in the left panel.
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species composition. We therefore focus our annual scenario discussion on one- and two-year 
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4.1. Drought Propagation  

Studies dealing with the propagation of meteorological drought show that the following effects 
take place as it moves through the hydrologic system [10,55]: (1) pooling, which is the combination 
of meteorological droughts into a longer term hydrological drought; (2) attenuation, or tempering of 
the drought signal by water storage components; (3) lag, or time between the occurrence of a 
meteorological drought and soil moisture/hydrological drought; and (4) lengthening, meaning that 
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control lag and attenuation, while climate and catchment properties control pooling and lengthening. 
In our case, we observed lengthening of the drought signal for both annual and monthly scenarios. 
For the annual scenarios, the hydrological drought extended for ~9 months after the meteorological 
drought had ended, while for the monthly scenarios, it extended for up to ~8 months. In addition, 
results from the monthly scenarios indicated a short lag (i.e., ~1 month) between rainfall deficits and 
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Figure 9. Effect of a (a) 4-month, (b) 10-month, and (c) 12-month meteorological drought on water
yield (WY) (mm month−1) for selected HRUs representative of the study area. For each figure, the left
panel shows the median (continuous line) and 95% probability (dashed line) water yield decrease for
subsequent months after drought termination. The vertical line at zero represents no change relative to
the reference scenario. Water yield decrease values to the right of the 95% probability line are unlikely.
The right panel shows probabilities of water yield decrease with colors scaled from high (red) to low
(blue) probability. Figure for all monthly scenarios in Supplementary Materials S8.

4. Discussion

In this section, we discuss our results within the context of research on streamflow response to
drought conditions and the role of different land cover types in moderating such response. Our annual
scenarios are illustrative of longer, but less severe meteorological drought conditions, while the
monthly scenarios represent shorter, but extremely severe rainfall deficits. We recognize that results
from our longer annual scenarios (three- to four-year droughts) may be limited as they did not
incorporate long-term drought related vegetation changes such as tree mortality and changes in species
composition. We therefore focus our annual scenario discussion on one- and two-year droughts.

4.1. Drought Propagation

Studies dealing with the propagation of meteorological drought show that the following effects
take place as it moves through the hydrologic system [10,55]: (1) pooling, which is the combination of
meteorological droughts into a longer term hydrological drought; (2) attenuation, or tempering of the
drought signal by water storage components; (3) lag, or time between the occurrence of a meteorological
drought and soil moisture/hydrological drought; and (4) lengthening, meaning that droughts become
longer as they move through the hydrologic system. Catchment characteristics control lag and
attenuation, while climate and catchment properties control pooling and lengthening. In our case,
we observed lengthening of the drought signal for both annual and monthly scenarios. For the annual
scenarios, the hydrological drought extended for ~9 months after the meteorological drought had
ended, while for the monthly scenarios, it extended for up to ~8 months. In addition, results from
the monthly scenarios indicated a short lag (i.e., ~1 month) between rainfall deficits and reductions
in water yield. The magnitude of this response was conditioned by the severity of rainfall deficits
(i.e., greater in monthly droughts vs. annual droughts), and timing of the meteorological drought
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(i.e., larger water yield reductions in droughts that included regularly wet months). Attenuation of
the meteorological drought signal was observed for the annual and monthly scenarios. For instance,
annual scenarios had maximum monthly rainfall deficits of 80%, while maximum monthly water yield
deficits of ~50% for wet forest, coffee, and shrub. Dry forest had more severe rainfall (100%) and
water yield deficits (80%). The same effect was observed for monthly scenarios, although the deficits
were larger.

Based on the above, our basin´s response to meteorological drought was controlled by climate,
specifically by strong rainfall seasonality, and by catchment characteristics that led to fast water
yield response. With respect to climate, the long-term climatology of our study region provides an
example of the “wet-to-dry season” drought type [55]. These droughts occur in warm regions with
strong seasonal variation in precipitation, where most recharge takes place during the wet season.
Therefore, rainfall deficits during the wet season affect storage and extend drought conditions into
the following dry season, as the probability of recharge during the latter is very low [13]. Slow
water pathways (i.e., baseflow, groundwater contribution to discharge) are critical in sustaining
streamflow during the dry season under such climates [10]. This is evident in our case, where baseflow
contribution to discharge reaches > ~80% during the dry season under normal conditions. Baseflow is
also the main contributor to discharge under drought conditions, as faster pathways (i.e., surface runoff
and lateral-flow/interflow) are first depleted during the propagation of a meteorological drought [10].
Our monthly scenarios showed that droughts during the first four months did not affect streamflow,
as recharge during the previous wet season maintained baseflow contribution to streamflow. Longer
droughts did affect streamflow, particularly when they extended to 10 consecutive months. We believe
that reduced streamflows during the dry season immediately following a 12-month drought were
related to decreased groundwater recharge and resulted from a combination of (1) a delayed start of
the wet season and (2) decreased rainfall during the wettest months of the year.

The main catchment characteristics that affect streamflow response to drought are related to its
storage capacity, and include soil properties, geology, groundwater system, presence of lakes, glaciers
and swamps, vegetation, and topography [10]. In particular, groundwater response time seems to
play a critical role on hydrological drought duration and severity [11]. Fast groundwater responding
systems tend to exhibit shorter and more intense hydrological droughts, while slow responding
systems tend to exhibit longer and more attenuated hydrological droughts [11,13]. Catchment response,
however, seems to be controlled by a combination of multiple factors [56]. Based on our catchment
characteristics and results, we consider the following aspects to play a significant role in drought
response: (1) catchment area and topography, (2) vegetation, and (3) soils and geology.

Catchment size is considered an important aspect of drought response, as large catchments
may have areas that respond to drought in different ways, modulating the overall response [10].
On the other hand, steep topography in tropical catchments leads to high rainfall spatial variability [57].
In our case, although the Río Frío catchment is fairly small (~300 km2), it exhibits a heterogeneous
response to drought in terms of water yield decrease magnitude, which we attribute to the steep
elevation gradient (20 masl to ~4200 masl) and its effect on rainfall. Rainfall records report mean
annual totals of 1000 mm at 25 masl to more than 2500 mm at ~2000 masl. The upper basin therefore
receives significantly more rainfall than the lower, as evidenced by differences in precipitation between
wet forest (higher elevation), shrub and coffee (intermediate), and dry forest (lower, Figures 1 and 5).
This spatial rainfall pattern controls the magnitude of drought throughout the basin. For instance,
our results showed that water yield decrease for dry forest was minimal compared to other land covers.
Since dry forest is located in the lower and drier part of the watershed, reductions in water yield are
small as they are limited by low precipitation inputs (Figure 5).



Water 2019, 11, 94 17 of 21

4.2. Land Cover Effects

The distribution of vegetation within our catchment is controlled by spatial rainfall patterns
as well as altitudinal temperature changes. Vegetation, in turn, plays a role on meteorological drought
intensification and hydrological drought recovery through its effects on land-atmosphere feedbacks [10]
and hydrologic regulation. For example, in warm seasonal climates, potential evapotranspiration (PET)
may increase as drought develops leading to higher actual ET which further depletes soil moisture
and prevents groundwater recharge [10]. In the specific case of forests, their role in water regulation is
critical for sustaining streamflow during dry periods. Data from a three-year paired catchment study
in the Panama Canal basin showed that a forested catchment sustained higher baseflow during the
dry season compared to pasture and mosaic (agriculture, secondary forest, and pasture) catchments,
supporting the “sponge-effect hypothesis” [58]. Data from the central Colombian Andes showed
that forests at different successional stages provided increased hydrological regulation through lower
variability in soil moisture storage, compared to pasture and croplands [50]. Similar findings are
reported for other tropical forest sites and are related to increased soil infiltration capacity during early
successional stages ([59] and references therein). In addition to water regulation, forests also display
higher resilience to drought due to a greater diversity of plant hydraulic strategies to cope with dry
conditions [60]. In our case, wet forests cover a significant portion of the watershed (45% or 136 km2)
between 800 and 4200 masl, with an average elevation of 2300 masl. Based on the recent land use
history of this region, it is likely that wet forests have varying degrees of intervention and successional
stages. Data from the central Colombian Andes show that hydrologic regulation recovery (e.g., greater
soil moisture storage and decreased overland flow) starts early in the successional process [50], while
data from central Mexico indicates that the hydrologic behavior of lower montane forests was restored
within 20 years after disturbance [61,62]. Recovery may be hindered by topsoil erosion due to severe
soil degradation [63]. Shrub in the Río Frío catchment displayed a drought response similar to wet
forest, which is consistent with the mentioned studies. With regards to coffee, all coffee in the SNSM
is grown as shade coffee, as opposed to other regions of Colombia, due to the marked dry season of
December-March. Research comparing lower montane rainforest forest and coffee agroforestry systems
in eastern Mexico showed that forest canopies retained more water due to higher leaf area, canopy
projection, presence of epiphytes, vertical stratification, and density of individuals [64]. On the other
hand, coffee systems had increased throughfall and stemflow (i.e., more water for infiltration). Studies
in the central coffee region of Colombia found slightly higher interception in shade-grown coffee
systems compared to secondary subandean forest, while no significant differences in infiltration and
overall low surface runoff under both systems [65]. Our results are consistent with the latter, as coffee´s
response to drought was similar to that of wet forest, suggesting that they both have comparable
hydrologic behavior.

Finally, although we did not explicitly explore the effects of soil type and underlying geology
on drought response, we consider both of them important as they partially control the amount of
water that infiltrates and eventually reaches the groundwater system. Specifically, soil survey data [26]
indicates that soils in the upper basin display greater infiltration rates (i.e., hydrologic group B) than
soils in the mid and lower basin (i.e., hydrologic group C).

Based on the above, we consider that shrub, coffee and wet forest in the mid and upper basin
are critical for water regulation and provisioning during droughts. In such areas, the interaction
between climate (e.g., higher rainfall and lower PET), land cover and soils leads to greater hydrological
regulation. Additional analyses on baseflow in selected land covers (not shown) indicates that the
effects of a 12-month drought extend for ~8 months after drought termination, suggesting that an
average wet season is sufficient to replenish all components of the system (soil and groundwater).
We also identified several lines for future model improvement, mainly: (1) better representation of
LAI patterns through the incorporation of a bimodal cycle and calibration of satellite data with
field measurements, (2) incorporation of long-term effects of drought on vegetation, (3) better
depiction of rainfall´s spatial variability considering the complex topography of our catchment, and (4)
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representation of preferential infiltration and percolation pathways, very likely to play an important
role considering the local soil and rock properties.

5. Conclusions

Our study watershed exhibited a fast streamflow response to meteorological drought propagation
and recovery. Although drought scenarios resulted in a significant decrease in discharge (e.g., 68%
during the first month following a 12-month drought), streamflow recovered within ~9 months after
drought termination, with recovery time varying according to the severity and timing of rainfall
deficits. We hypothesize that water yield response was controlled by a combination of climatic factors
and catchment properties. The influential climatic factors included large rainfall seasonality, with a
marked four-month dry season that concentrates only 5% of the total annual rainfall under average
conditions, and high spatial rainfall variability related to a steep elevation gradient. The influential
catchment properties included catchment size, slope steepness, soil infiltration rates, and density of
land covers. For this watershed, the hydrological regulation function of wet forests, shade coffee, and
shrub in the mid and upper basin, with high rainfall amounts, is considered critical for sustaining
streamflow during and after droughts.
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the sensitivity analysis. Supplementary Materials S5. Comparison of SWAT average water flux components prior
and after calibration with reference values. Calibration period from 2002 to 2008. Supplementary Materials S6.
Parameter ranges and best-fit parameter value for the selected SWAT model. Scaling type: v (absolute) indicates
that the parameter is replaced by the given value, r (relative) indicates that the parameter is multiplied by
[1 + (given value)]. The latter preserves the parameter´s spatial variability. Supplementary Materials S7. Effect of (a)
one-year, (b) two-year, (c) three-year, and (d) four-year meteorological drought on water yield (WY) (mm month-1)
for selected HRUs representative of the study area. For each figure, the left panel shows the median (continuous
line) and 95% probability (minimum value, dashed line) of water yield decrease from month 1 through month 36
after drought termination. The vertical line at zero represents no change relative to the reference scenario. Water
yield decrease values to the right of the 95% probability line are unlikely. The right panel shows probabilities of
water yield decrease with colors scaled from higher (red) to lower (blue) probability. Supplementary Materials S8.
Effect of monthly meteorological droughts on water yield (WY) (mm month-1) for selected HRUs representative
of the study area. For each figure, the left panel shows the median (continuous line) and 95% probability (dashed
line) water yield decrease for subsequent months after drought termination. The vertical line at zero represents no
change relative to the reference scenario. Water yield decrease values to the right of the 95% probability line are
unlikely. The right panel shows probabilities of water yield decrease with colors scaled from high (red) to low
(blue) probability.

Author Contributions: Conceptualization, N.H., A.C.-M., B.W., J.E., and J.C.R.; Formal analysis, N.H., A.C.-M.,
S.M.J., B.W., M.M., and R.D.; Funding acquisition, N.H., B.W., J.E., and M.I.V.; Methodology, N.H., A.C.-M., S.M.J.,
B.W., S.V., M.M., and R.D.; Project administration, N.H., J.E., and M.I.V.; Writing–original draft, N.H., S.M.J., and
J.E.; Writing–review and editing, N.H., A.C.-M., S.M.J., B.W., M.M., J.E., and J.C.R.

Funding: This research was partially funded by the Inter American Institute for Global Change Research (IAI)
CRN 798 3038 to establish the SAFER network and U.S. National Science Foundation Award #1336839. NH was
partially supported by the Fulbright Visiting Scholar Program from the Fulbright Commission in Colombia while
on research leave from Universidad del Norte. On-site resources for NH while a visiting scholar were provided by
the Department of Geography at the University of Vermont. J.E. and N.H. were partially funded by The Canadian
Queen Elizabeth II Diamond Jubilee Scholarships (QES), a partnership among Universities in Canada, the Rideau
Hall Foundation (RHF), Community Foundations of Canada (CFC). The QES-AS is made possible with financial
support from IDRC and SSHRC.

Acknowledgments: We gratefully acknowledge the support provided in the field by Hector Meza, Doña Mirosalba
Meza and Wilington Meza. The MODIS LAI data were retrieved from the NASA Earthdata Search Tool, courtesy of
the NASA EOSDIS Land Processes Distributed Active Archive Center (LP DAAC), USGS/Earth Resources
Observation and Science (EROS) Center, Sioux Falls, South Dakota (https://search.earthdata.nasa.gov/). We also
thank the editor and anonymous reviewers for their comments which helped to improve our manuscript.

http://www.mdpi.com/2073-4441/11/1/94/s1
https://search.earthdata.nasa.gov/


Water 2019, 11, 94 19 of 21

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design of the
study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to
publish the results.

References

1. Steffen, W.; Persson, A.; Deutsch, L.; Zalasiewicz, J.; Williams, M.; Richardson, K.; Crumley, C.; Crutzen, P.;
Folke, C.; Gordon, L.; et al. The anthropocene: From global change to planetary stewardship. Ambio 2011, 40,
739–761. [CrossRef] [PubMed]

2. IPCC. Climate Change 2007: The Physical Science Basis; Cambridge University Press: Cambridge, UK, 2007;
p. 987.

3. FAO. AQUASTAT. Available online: http://www.fao.org/nr/water/aquastat/countries_regions/americas/
indexesp3.stm (accessed on 3 October 2018).

4. Nurse, L.A.; Sem, G.; Hay, J.E.; Suarez, A.G.; Wong, P.P.; Briguglio, L.; Ragoonaden, S. Small island states.
In Climate Change 2001: Impacts, Adaptation, and Vulnerability; McCarthy, J.J., Canziani, O.F., Leary, N.A.,
Dokken, D.J., White, K.S., Eds.; Cambridge University Press: Cambridge, UK, 2001; pp. 843–875.

5. Neelin, J.D.; Münnich, M.; Su, H.; Meyerson, J.E.; Holloway, C.E. Tropical drying trends in global warming
models and observations. Proc. Natl. Acad. Sci. USA 2006, 103, 6110–6115. [CrossRef] [PubMed]

6. Campbell, J.D.; Taylor, M.A.; Stephenson, T.S.; Watson, R.A.; Whyte, F.S. Future climate of the Caribbean
from a regional climate model. Int. J. Climatol. 2011, 31, 1866–1878. [CrossRef]

7. Singh, B. Climate changes in the greater and southern Caribbean. Int. J. Climatol. 1997, 17, 1093–1114.
[CrossRef]

8. Angeles, M.E.; Gonzalez, J.E.; Erickson, D.J.I.; Hernandez, J.L. Predictions of future climate change in the
Caribbean region using global general circulation models. Int. J. Climatol. 2006, 27, 555–569. [CrossRef]

9. Herrera, D.A.; Ault, T.R.; Fasullo, J.T.; Coats, S.J.; Carrillo, C.M.; Cook, B.I.; Williams, A.P. Exacerbation of the
2013–2016 Pan-Caribbean Drought by Anthropogenic Warming. Geophys. Res. Lett. 2018, 45, 10619–10626.
[CrossRef]

10. Van Loon, A.F. Hydrological drought explained. Wiley Interdiscip. Rev. Water 2015, 2, 359–392. [CrossRef]
11. Van Lanen, H.A.J.; Wanders, N.; Tallaksen, L.M.; Van Loon, A.F. Hydrological drought across the world:

Impact of climate and physical catchment structure. Hydrol. Earth Syst. Sci. 2013, 17, 1715–1732. [CrossRef]
12. Van Loon, A.F.; Gleeson, T.; Clark, J.; Van Dijk, A.I.J.M.; Stahl, K.; Hannaford, J.; Di Baldassarre, G.;

Teuling, A.J.; Tallaksen, L.M.; Uijlenhoet, R.; et al. Drought in the Anthropocene. Nat. Geosci. 2016, 9, 89–91.
[CrossRef]

13. Van Loon, A.F.; Tijdeman, E.; Wanders, N.; Van Lanen, H.A.J.; Teuling, A.J.; Uijlenhoet, R. How climate
seasonality modifies drought duration and deficit. J. Geophys. Res. Atmos. 2014, 119, 4640–4656. [CrossRef]

14. Aldana-Domínguez, J.; Montes, C.; Martínez, M.; Medina, N.; Hahn, J.; Duque, M. Biodiversity and ccosystem
services knowledge in the Colombian Caribbean: Progress and challenges. Trop. Conserv. Sci. 2017, 10,
1940082917714229. [CrossRef]

15. Tribin, M.C.D.G.; Rodriguez, N.G.E.; Valderrama, M. Sierra Nevada de Santa Marta: A Pioneer Experience of a
Shared and Coordinated Management of a Bioregion; UNESCO: Paris, France, 1999; p. 40.

16. Ruiz, F.; Rodriguez, A.; Armenta, G.; Grajales, F. Informe de Escenarios de Cambio Climático para Temperatura y
Precipitación en Colombia; IDEAM: Bogotá, Colombia, 2013; p. 81.

17. IDEAM; PNUD; MADS; DNP; CANCILLERÍA. Escenarios de Cambio Climático para Precipitación y Temperatura
para Colombia 2011–2100: Herramientas Científicas para la Toma de Decisions—Estudio Técnico Completo: Tercera
Comunicación Nacional de Cambio Climático; IDEAM: Bogotá, Colombia, 2015; p. 278.

18. Ochoa, A.; Poveda, G. Distribución espacial de señales de cambio climático en Colombia. In Proceedings of
the XXIII Congreso Latinoamericano de Hidráulica, Cartagena, Colombia, 2–6 September 2008.

19. Cantor, D.C. Evaluación y Análisis Espacio Temporal de Tendencias de Largo plazo en la Hidroclimatología Colombiana;
Universidad Nacional de Colombia: Medellín, Colombia, 2011.

20. Pabón, J.D. Cambio climático en Colombia: Tendencias en la segunda mitad del siglo XX y escenarios
posibles para el siglo XXI. Rev. Acad. Colomb. Cienc. Exactas Fís. Nat. 2012, 36, 261–278.

21. Carmona, A.M.; Poveda, G. Detection of long-term trends in monthly hydro-climatic series of Colombia
through Empirical Mode Decomposition. Clim. Chang. 2014, 123, 301–313. [CrossRef]

http://dx.doi.org/10.1007/s13280-011-0185-x
http://www.ncbi.nlm.nih.gov/pubmed/22338713
http://www.fao.org/nr/water/aquastat/countries_regions/americas/indexesp3.stm
http://www.fao.org/nr/water/aquastat/countries_regions/americas/indexesp3.stm
http://dx.doi.org/10.1073/pnas.0601798103
http://www.ncbi.nlm.nih.gov/pubmed/16606851
http://dx.doi.org/10.1002/joc.2200
http://dx.doi.org/10.1002/(SICI)1097-0088(199708)17:10&lt;1093::AID-JOC187&gt;3.0.CO;2-L
http://dx.doi.org/10.1002/joc.1416
http://dx.doi.org/10.1029/2018GL079408
http://dx.doi.org/10.1002/wat2.1085
http://dx.doi.org/10.5194/hess-17-1715-2013
http://dx.doi.org/10.1038/ngeo2646
http://dx.doi.org/10.1002/2013JD020383
http://dx.doi.org/10.1177/1940082917714229
http://dx.doi.org/10.1007/s10584-013-1046-3


Water 2019, 11, 94 20 of 21

22. Hurtado, A.F.; Mesa, O.J. Cambio climático y variabilidad espacio-temporal de la precipitación en Colombia.
Rev. EIA 2015, 12, 131–150. [CrossRef]

23. Pierini, J.O.; Restrepo, J.C.; Aguirre, J.; Bustamante, A.M.; Velásquez, G.J. Changes in seasonal streamflow
extremes experienced in rivers of Northwestern South America (Colombia). Acta Geophys. 2017, 65, 377–394.
[CrossRef]

24. UNGRD. Fenómeno El Niño. Análisis Comparativo 1997–1998//2014–2016; Unidad Nacional para la Gestión del
Riesgo de Desastres: Bogotá, Colombia, 2016; p. 143.

25. Restrepo, J.C.; Ortiz, J.C.; Pierini, J.; Schrottke, K.; Maza, M.; Otero, L.; Aguirre, J. Freshwater discharge into
the Caribbean Sea from the rivers of Northwestern South America (Colombia): Magnitude, variability and
recent changes. J. Hydrol. 2014, 509, 266–281. [CrossRef]

26. International Global Atmospheric Chemistry (IGAC). Estudio General de suelos y Zonificación del Tierras:
Departamento del Magdalena, Escala 1:100000; IGAC: Bogotá, Colombia, 2009.

27. Fundación Pro-Sierra Nevada de Santa Marta. Plan de Desarrollo Sostenible de la Sierra Nevada de Santa Marta;
Fundación Pro-Sierra Nevada de Santa Marta: Santa Marta, Colombia, 1997; p. 228.

28. Uribe, E. Natural Resource Conservation and Management in the Sierra Nevada of Santa Marta: Case Study;
Universidad de los Andes: Bogotá, Colombia, 2005.

29. MADS; IDEAM; IAvH; INVEMAR; IIAP; SINCHI; PNN; IGAC. Mapa de Ecosistemas Continentales, Costeros y
Marinos de Colombia Version 1.0; IDEAM: Bogotá, Colombia, 2015.

30. IDEAM (Instituto de Hidrología, Meteorología y Estudios Ambientales). Informe del Estado de los Glaciares
Colombianos; Instituto de Hidrología, Meteorología y Estudios Ambientales: Bogotá, Colombia, 2018.

31. Neitsch, S.L.; Arnold, J.G.; Kiniry, J.R.; Williams, J.R. Soil and Water Assessment Tool Theoretical Documentation,
Version 2009; Texas Water Resources Institute: College Station, TX, USA, 2011; p. 618.

32. Arnold, J.G.; Moriasi, D.N.; Gassman, P.W.; Abbaspour, K.C.; White, M.J.; Srinivasan, R.; Santhi, C.;
Harmel, R.D.; van Griensven, A.; Van Liew, M.W.; et al. SWAT: Model use, calibration, and validation.
Trans. ASABE 2012, 55, 1491–1508. [CrossRef]

33. Abe, C.A.; Lobo, F.L.; Dibike, Y.B.; Costa, M.P.F.; Dos Santos, V.; Novo, E.M.L.M. Modelling the effects of
historical and future land cover changes on the hydrology of an Amazonian basin. Water 2018, 10, 932.
[CrossRef]

34. Montecelos-Zamora, Y.; Cavazos, T.; Kretzschmar, T.; Vivoni, E.R.; Corzo, G.; Molina-Navarro, E.
Hydrological modeling of climate change impacts in a tropical river basin: A case study of the Cauto
river, Cuba. Water 2018, 10, 1135. [CrossRef]

35. QGIS Development Team. QGIS Geographic Information System; Open Source Geospatial Foundation Project,
2.18.6; QGIS Development Team, 2017.

36. Saxton, K.E.; Rawls, W.J. Soil water characteristic estimates by texture and organic matter for hydrologic
solutions. Soil Sci. Soc. Am. J. 2006, 70, 1569–1578. [CrossRef]

37. Borselli, L. KUERY. Global Erodibility Database Query, 1.4; San Luis Potosí, Mexico, 2013.
38. Borselli, L.; Torri, D.; Poesen, J.; Iaquinta, P. A robust algorithm for estimating soil erodibility in different

climates. Catena 2012, 97, 85–94. [CrossRef]
39. Post, D.F.; Fimbres, A.; Matthias, A.D.; Sano, E.E.; Accioly, L.; Batchily, A.K.; Ferreira, L.G. Predicting soil

albedo from soil color and spectral reflectance data. Soil Sci. Soc. Am. J. 2000, 64, 1027–1034. [CrossRef]
40. Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [CrossRef]
41. Chavez, P.S. Image-based atmospheric corrections—Revisited and improved. Photogramm. Eng. Remote Sens.

1996, 62, 1025–1036.
42. R Core Team R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing:

Vienna, Austria, 2017.
43. Breiman, L.; Cutler, A. Random Forests. Available online: https://www.stat.berkeley.edu/~{}breiman/

RandomForests/cc_home.htm (accessed on 10 February 2016).
44. Myneni, R.; Knyazikhin, Y.; Park, T. MOD15A2H MODIS/Terra Leaf Area Index/FPAR 8-Day L4 Global 500m

SIN Grid V006; NASA EOSDIS Land Processes DAAC: Sioux Falls, SD, USA, 2015.
45. Abbaspour, K.C.; Johnson, C.A.; van Genuchten, M.T. Estimating Uncertain Flow and Transport Parameters

Using a Sequential Uncertainty Fitting Procedure. Vadose Zone J. 2004, 3, 1340–1352. [CrossRef]

http://dx.doi.org/10.14508/reia.2015.12.24.131-150
http://dx.doi.org/10.1007/s11600-017-0036-7
http://dx.doi.org/10.1016/j.jhydrol.2013.11.045
http://dx.doi.org/10.13031/2013.42256
http://dx.doi.org/10.3390/w10070932
http://dx.doi.org/10.3390/w10091135
http://dx.doi.org/10.2136/sssaj2005.0117
http://dx.doi.org/10.1016/j.catena.2012.05.012
http://dx.doi.org/10.2136/sssaj2000.6431027x
http://dx.doi.org/10.1023/A:1010933404324
https://www.stat.berkeley.edu/~{}breiman/RandomForests/cc_home.htm
https://www.stat.berkeley.edu/~{}breiman/RandomForests/cc_home.htm
http://dx.doi.org/10.2136/vzj2004.1340


Water 2019, 11, 94 21 of 21

46. Abbaspour, K.C.; Yang, J.; Maximov, I.; Siber, R.; Bogner, K.; Mieleitner, J.; Zobrist, J.; Srinivasan, R. Modelling
hydrology and water quality in the pre-alpine/alpine Thur watershed using SWAT. J. Hydrol. 2007, 333,
413–430. [CrossRef]

47. Abbaspour, K.C.; Srinivasan, R. SWAT-CUP, 5.1.6.2; EAWAG: Dubendorf, Switzerland, 2013.
48. Suárez de Castro, F.; Rodríguez Grandas, A. Investigaciones Sobre la Erosión y la Conservación de los Suelos en

Colobia; Federación Nacional de Cafeteros: Bogotá, Colombia, 1962; p. 471.
49. Jaramillo-Robledo, A. El balance hídrico. In Clima andino y café en Colombia; Cenicafé: Chinchiná, Colombia,

2005; pp. 107–123.
50. García-Leoz, V.; Villegas, J.C.; Suescún, D.; Flórez, C.P.; Merino-Martín, L.; Betancur, T.; León, J.D. Land cover

effects on water balance partitioning in the Colombian Andes: Improved water availability in early stages of
natural vegetation recovery. Reg. Environ. Chang. 2018, 18, 1117–1129. [CrossRef]

51. Strauch, M.; Volk, M. SWAT plant growth modification for improved modeling of perennial vegetation in
the tropics. Ecol. Model. 2013, 269, 98–112. [CrossRef]

52. Alemayehu, T.; van Griensven, A.; Woldegiorgis, B.T.; Bauwens, W. An improved SWAT vegetation growth
module and its evaluation for four tropical ecosystems. Hydrol. Earth Syst. Sci. 2017, 21, 4449–4467.
[CrossRef]

53. Moriasi, D.N.; Arnold, J.G.; Van Liew, M.W.; Bingner, R.L.; Harmel, R.D.; Veith, T.L. Model evaluation
guidelines for systematic quantification of accuracy in watershed simulations. Trans. ASABE 2007, 50,
885–900. [CrossRef]

54. Arnold, J.G.; Kiniry, J.R.; Srinivasan, R.; Williams, J.R.; Haney, E.B.; Neitsch, S.L. SWAT Input/Output
Documentation, Version 2012; Texas Water Resources Institute: College Station, TX, USA, 2012; p. 654.

55. Van Loon, A.F.; Van Lanen, H.A.J. A process-based typology of hydrological drought. Hydrol. Earth Syst. Sci.
2012, 16, 1915–1946. [CrossRef]

56. Van Loon, A.F.; Laaha, G. Hydrological drought severity explained by climate and catchment characteristics.
J. Hydrol. 2015, 526, 3–14. [CrossRef]

57. Wohl, E.; Barros, A.; Brunsell, N.; Chappell, N.A.; Coe, M.; Giambelluca, T.; Goldsmith, S.; Harmon, R.;
Hendrickx, J.M.H.; Juvik, J.; et al. The hydrology of the humid tropics. Nat. Clim. Chang. 2012, 2, 655.
[CrossRef]

58. Ogden, F.L.; Crouch, T.D.; Stallard, R.F.; Hall, J.S. Effect of land cover and use on dry season river runoff,
runoff efficiency, and peak storm runoff in the seasonal tropics of Central Panama. Water Resour. Res. 2013,
49, 8443–8462. [CrossRef]

59. Bruijnzeel, L.A. Hydrological functions of tropical forests: Not seeing the soil for the trees? Agric. Ecosyst.
Environ. 2004, 104, 185–228. [CrossRef]

60. Anderegg, W.R.L.; Konings, A.G.; Trugman, A.T.; Yu, K.; Bowling, D.R.; Gabbitas, R.; Karp, D.S.; Pacala, S.;
Sperry, J.S.; Sulman, B.N.; et al. Hydraulic diversity of forests regulates ecosystem resilience during drought.
Nature 2018, 561, 538–541. [CrossRef] [PubMed]

61. Muñoz-Villers, L.E.; Holwerda, F.; Gómez-Cárdenas, M.; Equihua, M.; Asbjornsen, H.; Bruijnzeel, L.A.;
Marín-Castro, B.E.; Tobón, C. Water balances of old-growth and regenerating montane cloud forests in
central Veracruz, Mexico. J. Hydrol. 2012, 462–463, 53–66. [CrossRef]

62. Muñoz-Villers, L.E.; McDonnell, J.J. Land use change effects on runoff generation in a humid tropical
montane cloud forest region. Hydrol. Earth Syst. Sci. 2013, 17, 3543–3560. [CrossRef]

63. Cavelier, J.; Aide, T.M.; Santos, C.; Eusse, A.M.; Dupuy, J.M. The Savannization of Moist Forests in the Sierra
Nevada de Santa Marta, Colombia. J. Biogeogr. 1998, 25, 901–912. [CrossRef]

64. Ponette-González, A.G.; Weathers, K.C.; Curran, L.M. Water inputs across a tropical montane landscape in
Veracruz, Mexico: Synergistic effects of land cover, rain and fog seasonality, and interannual precipitation
variability. Glob. Chang. Biol. 2010, 16, 946–963. [CrossRef]

65. Jaramillo-Robledo, A.; Cháves-Córdoba, B. Aspectos hidrológicos en un bosque y en plantaciones de café
(Coffea arabica L.) al sol y bajo sombra. Cenicafé 1999, 50, 97–105.

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.jhydrol.2006.09.014
http://dx.doi.org/10.1007/s10113-017-1249-7
http://dx.doi.org/10.1016/j.ecolmodel.2013.08.013
http://dx.doi.org/10.5194/hess-21-4449-2017
http://dx.doi.org/10.13031/2013.23153
http://dx.doi.org/10.5194/hess-16-1915-2012
http://dx.doi.org/10.1016/j.jhydrol.2014.10.059
http://dx.doi.org/10.1038/nclimate1556
http://dx.doi.org/10.1002/2013WR013956
http://dx.doi.org/10.1016/j.agee.2004.01.015
http://dx.doi.org/10.1038/s41586-018-0539-7
http://www.ncbi.nlm.nih.gov/pubmed/30232452
http://dx.doi.org/10.1016/j.jhydrol.2011.01.062
http://dx.doi.org/10.5194/hess-17-3543-2013
http://dx.doi.org/10.1046/j.1365-2699.1998.00222.x
http://dx.doi.org/10.1111/j.1365-2486.2009.01985.x
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Modeling streamflow response to persistent drought in a coastal tropical mountainous watershed, Sierra Nevada de Santa Marta, Colombia
	Recommended Citation
	Authors

	Introduction 
	Methods 
	Study Site 
	Hydrologic Model 
	Data Sources and Processing 
	Model Setup 
	Model Calibration and Validation 

	Scenarios 
	Synthetic Rainfall Series 
	HRU Selection 
	Statistical Analyses 


	Results 
	Land Cover Classification 
	SWAT-T leaf Area Index (LAI) Calibration 
	Discharge Calibration and Validation 
	Scenarios 
	Annual Drought Scenarios 
	Monthly Drought Scenarios 


	Discussion 
	Drought Propagation 
	Land Cover Effects 

	Conclusions 
	References

