142 research outputs found

    Rotor design optimization using a free wake analysis

    Get PDF
    The aim of this effort was to develop a comprehensive performance optimization capability for tiltrotor and helicopter blades. The analysis incorporates the validated EHPIC (Evaluation of Hover Performance using Influence Coefficients) model of helicopter rotor aerodynamics within a general linear/quadratic programming algorithm that allows optimization using a variety of objective functions involving the performance. The resulting computer code, EHPIC/HERO (HElicopter Rotor Optimization), improves upon several features of the previous EHPIC performance model and allows optimization utilizing a wide spectrum of design variables, including twist, chord, anhedral, and sweep. The new analysis supports optimization of a variety of objective functions, including weighted measures of rotor thrust, power, and propulsive efficiency. The fundamental strength of the approach is that an efficient search for improved versions of the baseline design can be carried out while retaining the demonstrated accuracy inherent in the EHPIC free wake/vortex lattice performance analysis. Sample problems are described that demonstrate the success of this approach for several representative rotor configurations in hover and axial flight. Features that were introduced to convert earlier demonstration versions of this analysis into a generally applicable tool for researchers and designers is also discussed

    Investigation of mixed element hybrid grid-based CFD methods for rotorcraft flow analysis

    Get PDF
    Accurate first-principles flow prediction is essential to the design and development of rotorcraft, and while current numerical analysis tools can, in theory, model the complete flow field, in practice the accuracy of these tools is limited by various inherent numerical deficiencies. An approach that combines the first-principles physical modeling capability of CFD schemes with the vortex preservation capabilities of Lagrangian vortex methods has been developed recently that controls the numerical diffusion of the rotor wake in a grid-based solver by employing a vorticity-velocity, rather than primitive variable, formulation. Coupling strategies, including variable exchange protocols are evaluated using several unstructured, structured, and Cartesian-grid Reynolds Averaged Navier-Stokes (RANS)/Euler CFD solvers. Results obtained with the hybrid grid-based solvers illustrate the capability of this hybrid method to resolve vortex-dominated flow fields with lower cell counts than pure RANS/Euler methods

    Analysis of rotor vibratory loads using higher harmonic pitch control

    Get PDF
    Experimental studies of isolated rotors in forward flight have indicated that higher harmonic pitch control can reduce rotor noise. These tests also show that such pitch inputs can generate substantial vibratory loads. The modification is summarized of the RotorCRAFT (Computation of Rotor Aerodynamics in Forward flighT) analysis of isolated rotors to study the vibratory loading generated by high frequency pitch inputs. The original RotorCRAFT code was developed for use in the computation of such loading, and uses a highly refined rotor wake model to facilitate this task. The extended version of RotorCRAFT incorporates a variety of new features including: arbitrary periodic root pitch control; computation of blade stresses and hub loads; improved modeling of near wake unsteady effects; and preliminary implementation of a coupled prediction of rotor airloads and noise. Correlation studies are carried out with existing blade stress and vibratory hub load data to assess the performance of the extended code

    Die Identitätskonstruktion philippinischer Diplomkrankenschwestern in Wien

    Get PDF
    Anfang der 1970er Jahre bestand im österreichischen Gesundheitswesen eine große Nachfrage nach fachlich kompetentem und qualifiziertem Pflegepersonal. Um dem Mangel an Krankenschwestern- und Pflegepersonal in den österreichischen Krankenhäusern entgegen zu wirken, wandte sich die österreichische Regierung an ausländische Arbeitskräfte, was im Jahre 1973 unter Anderem eine Unterzeichnung des bilateralen Abkommens zwischen der Stadt Wien und dem philippinischen Arbeitsministerium zur Folge hatte. Die Migrationsbewegungen philippinischer Diplomkrankenschwestern von den Philippinen nach Österreich beeinflusste das soziale Handeln und Agieren der Akteurinnen und wirkte sich schlussendlich auf ihre Identitäten aus. Die theoretische Abhandlung und die anschließende Repräsentation der empirischen Forschungsarbeit behandeln die Identitätskonstruktionen sechs philippinischer Diplomkrankenschwestern in Wien.In the beginning of the 1970s, the increasing demand of skilled and well-trained nursing staff in the hospitals of Austria implied the need for a sustaining and effective resolution. To accomodate the demand of the absent nursing staff, the Austrian Government decided to apply for foreigners who were qualified for the work in the tertiary sector. In 1973, the official endorsement of the bilateral agreement between the Austrian Government and the Philippines Department of Labour started the recruitment of registered nurses from the Philippines. The diploma thesis highlights the identity construction of six Philippine registered nurses, who migrated to Austria. The migration to Austria implicated transformations in their specific social structures and activities and eventually had strong and remarkable influence on each of their personal identities. To understand the investigated theme, the diploma thesis is based on a theoretic study and exposition concerning this matter. It was essential to support the represented empirical work about the six Philippine registered nurses in Vienna

    Computation of rotor aerodynamic loads in forward flight using a full-span free wake analysis

    Get PDF
    The development of an advanced computational analysis of unsteady aerodynamic loads on isolated helicopter rotors in forward flight is described. The primary technical focus of the development was the implementation of a freely distorting filamentary wake model composed of curved vortex elements laid out along contours of constant vortex sheet strength in the wake. This model captures the wake generated by the full span of each rotor blade and makes possible a unified treatment of the shed and trailed vorticity in the wake. This wake model was coupled to a modal analysis of the rotor blade dynamics and a vortex lattice treatment of the aerodynamic loads to produce a comprehensive model for rotor performance and air loads in forward flight dubbed RotorCRAFT (Computation of Rotor Aerodynamics in Forward Flight). The technical background on the major components of this analysis are discussed and the correlation of predictions of performance, trim, and unsteady air loads with experimental data from several representative rotor configurations is examined. The primary conclusions of this study are that the RotorCRAFT analysis correlates well with measured loads on a variety of configurations and that application of the full span free wake model is required to capture several important features of the vibratory loading on rotor blades in forward flight

    O(N) continuous electrostatics solvation energies calculation method for biomolecules simulations

    Full text link
    We report a development of a new fast surface-based method for numerical calculations of solvation energy of biomolecules with a large number of charged groups. The procedure scales linearly with the system size both in time and memory requirements, is only a few percent wrong for any molecular configurations of arbitrary sizes, gives explicit value for the reaction field potential at any point, provides both the solvation energy and its derivatives suitable for Molecular Dynamics simulations. The method works well both for large and small molecules and thus gives stable energy differences for quantities such as solvation energies of molecular complex formation.Comment: 6 pages, 4 figures, more results, examples and references adde

    An Adaptive Fast Multipole Boundary Element Method for Poisson−Boltzmann Electrostatics

    Get PDF
    The numerical solution of the Poisson−Boltzmann (PB) equation is a useful but a computationally demanding tool for studying electrostatic solvation effects in chemical and biomolecular systems. Recently, we have described a boundary integral equation-based PB solver accelerated by a new version of the fast multipole method (FMM). The overall algorithm shows an order N complexity in both the computational cost and memory usage. Here, we present an updated version of the solver by using an adaptive FMM for accelerating the convolution type matrix-vector multiplications. The adaptive algorithm, when compared to our previous nonadaptive one, not only significantly improves the performance of the overall memory usage but also remarkably speeds the calculation because of an improved load balancing between the local- and far-field calculations. We have also implemented a node-patch discretization scheme that leads to a reduction of unknowns by a factor of 2 relative to the constant element method without sacrificing accuracy. As a result of these improvements, the new solver makes the PB calculation truly feasible for large-scale biomolecular systems such as a 30S ribosome molecule even on a typical 2008 desktop computer

    Continuing outcomes relevant to Evista:Breast cancer incidence in postmenopausal osteoporotic women in a randomized trial of Raloxifene

    Get PDF
    corecore