76 research outputs found

    Entwicklungsprozess fĂŒr qualifizierbare Softwarewerkzeuge nach ISO 26262

    Get PDF
    Um die hohen QualitĂ€tsanforderungen an Softwarewerkzeuge fĂŒr die Entwicklung eingebetteter Systeme im Automobilumfeld zu gewĂ€hrleisten, wurde in dieser Arbeit in Zusammenarbeit mit dem Unternehmen TWT ein QualitĂ€tsprozess definiert, der die Nachweisbarkeit von Anforderungen sowie eine Qualifizierung nach dem Sicherheitsstandard ISO 26262 ermöglicht. HierfĂŒr wurden zunĂ€chst die Vorgaben des Sicherheitsstandards zur Softwareentwicklung und zur Qualifizierung von Softwarewerkzeugen analysiert. Danach wurden die bestehenden Softwareentwicklungsprozesse bei der TWT untersucht. Aus beidem wurden anschließend Anforderungen an den QualitĂ€tsprozess abgeleitet, so dass dieser sowohl die Anforderungen des Sicherheitsstandards erfĂŒllt als auch sich in die bestehenden Entwicklungsprozesse bei TWT einfĂŒgt. Das Konzept des QualitĂ€tsprozesses basiert auf dem im Sicherheitsstandard verwendeten V-Modell, erweitert dieses jedoch um den Einsatz eines kontinuierlichen, testorientierten Requirements Engineerings, einer kontinuierlichen Integration und um Quality Gates, die die Phasen des V-Modells voneinander trennen. Durch das Requirements Engineering und die Quality Gates werden sowohl die Softwareanforderungen validiert als auch die Anforderungen und Vorgaben des Sicherheitsstandards auf ihre Einhaltung ĂŒberprĂŒft. Durch den Einsatz einer kontinuierlichen Integration, fĂŒgt sich der QualitĂ€tsprozess in die bestehenden Entwicklungsprozesse bei TWT ein. Abschließend wurde der ausgearbeitete QualitĂ€tsprozess in einem Expertenreview evaluiert. Die Evaluation ergab, dass der QualitĂ€tsprozess die Anforderungen erfĂŒllt. Des Weiteren gab es Anregungen fĂŒr eine Erweiterung des QualitĂ€tsprozesses.In this work, a quality process was defined in close cooperation with the company TWT to ensure the high quality requirements of software tools used for developing embedded systems in the automobile environment. This process allows verifying these requirements as well as qualifying software tools based on the safety standard ISO 26262. For this purpose, the requirements of the safety standard for developing software and qualifying software tools were analyzed. Afterwards, the existing software development processes at TWT were examined. Based on both, requirements for the quality process were derived in order to comply with the requirements of the safety standard as well as to embed the process into the existing development processes at TWT. The concept of the quality process is based on the V-Model used in the safety standard. Additionally, the V-Model is extended with a continuous and test oriented requirements engineering, a continuous integration, and quality gates, which separate the phases of the V-Model. Requirements engineering and quality gates are used to validate software requirements as well as to ensure compliance with requirements of the safety standard. By using continuous integration, the quality process is embedded into the current development processes at TWT. Last, the quality process was evaluated in an expert review. The evaluation showed that the quality process meets all requirements. Furthermore, suggestions for extensions of the quality process were given

    Intuitive visualization technique to support eye tracking data analysis: A user-study

    Get PDF
    While fixation distribution is conventionally visualized using heat maps, there is still a lack of a commonly accepted technique to visualize saccade distributions. Inspired by wind maps and the Oriented Line Integral Convolution (OLIC) technique, we visualize saccades by drawing ink droplets which follow the direction indicated by a flow direction map. This direction map is computed using a kernel density estimation technique over the tangent directions to each saccade gaze point. The image is further blended with the corresponding heat map. It results in an animation or a static image showing main directions of the transitions between different areas of interest. We also present results from a web-based user study where naive non-expert users where asked to identify the direction of the flow and simple patterns. The results showed that these visualizations can successfully be used to support visual analysis of the eye-tracking data. It also showed that the use of animation allows to ease the task and to improve the performance

    Seismotectonic analysis around the Mont Terri rock laboratory (Switzerland): a pilot study

    Get PDF
    For this pilot study we used recorded seismic events from the SED permanent network and data from a dedicated SNS network to improve the seismotectonic understanding of very weak seismicity in the vicinity of the Mont Terri underground laboratory. We combined field data on faults with microseismic events and modelling of stress and focal mechanisms. Eighty-six events with very low magnitudes (ML ≈ −2.0 to 2.0) recorded between July 2014 and August 2015 were located within a radius of 10 km of the underground laboratory and used for modelling. We compiled 234 fault/striation data from laboratory tunnels and regional geology, and also from seismic/borehole data on basement faults. With this database we defined seven groups of main faults in the cover and four groups in the basement. For each of these groups we computed a synthetic focal mechanism that was subsequently used to determine a synthetic P-phase waveform. The synthetic waveforms were then correlated with the microseismic events of the cover and the basement respectively. Of these, 78 events yielded satisfactorily correlation coefficients that we used for a regional seismotectonic interpretation. The synthetic focal mechanism can be linked to the main regional structural features: the NNE–SSW-oriented reactivated faults associated with the Rhine Graben development, and the NE–SW-oriented reverse faults related to the thrust development of major folds such as the Mont Terri anticline. The results for this pilot study confirm that our affirmative method can be used to augment local and regional seismotectonic interpretations with very weak-intensity earthquake data

    Preparing for Perceptual Studies: Position and Orientation of Wrist-worn Smartwatches for Reading Tasks

    Get PDF
    International audienceDespite the increasing demand for data visualization on mobile devices with small displays, few guidelines exist for designing visualizations for this form factor. To conduct perceptual studies with smartwatches under realistic conditions , we first need to know how to position these devices in front of a viewer. We report the results of a study, in which we investigate how people hold their smartwatches to read information. This is the first in a series of studies we are conducting to understand the perception of visualizations on smartwatches. Our study results show that people hold their watches at a distance of 28 cm in front of them, at a pitch angle of ~50 degrees, and at an angle of ~10 degrees from the line of sight

    Reflections on Visualization in Motion for Fitness Trackers

    Get PDF
    International audienceIn this paper, we reflect on our past work towards understanding how to design visualizations for fitness trackers that are used in motion. We have coined the term "visualization in motion" for visualizations that are used in the presence of relative motion between a viewer and the visualization. Here, we describe how visualization in motion is relevant to sports scenarios. We also provide new data on current smartwatch visualizations for sports and discuss future challenges for visualizations in motion for fitness trackers

    First observations of high-temperature submarine hydrothermal vents and massive anhydrite deposits off the north coast of Iceland

    Get PDF
    High-temperature (250°C) hydrothermal vents and massive anhydrite deposits have been found in a shallow water, sediment-filled graben near 66°36â€ČN in the Tjornes Fracture Zone north of Iceland. The site is located about 30 km offshore, near the small island of Grimsey. The main vent field occurs at a depth of 400 m and consists of about 20 large-diameter (up to 10 m) mounds and 1–3 m chimneys and spires of anhydrite and talc. A north–south alignment of the mounds over a 1-km strike length of the valley floor suggests that their distribution is controlled by a buried fault. Widespread shimmering water and extensive white patches of anhydrite in the sediment between the mounds indicates that the entire 1-km2 area occupied by the vents is thermally active. A 2-man research submersible JAGO was used to map the area and to sample vent waters, gases, and chimneys. Actively boiling hydrothermal vents occur on most of the mounds, and extensive two-phase venting indicates that the field is underlain by a large boiling zone (200×300 m). The presence of boiling fluids in shallow aquifers beneath the deposits was confirmed by sediment coring. The highest-temperature pore fluids were encountered in talc- and anhydrite-rich sedimentary layers that occur up to 7 m below the mounds. Baked muds underlie the talc and anhydrite layers, and pyrite is common in stockwork-like fractures and veins in the hydrothermally altered sediments. However, massive sulfides (pyrite–marcasite crusts) were found in only one relict mound. Subseafloor boiling has likely affected the metal-carrying capacity of the hydrothermal fluids, and deposition of sulfides may be occurring at greater depth. Although the mounds and chimneys at Grimsey resemble other deposits at sedimented ridges (e.g. Middle Valley, Escanaba Trough, Guaymas Basin), the shallow water setting and extensive boiling of the hydrothermal fluids represent a distinctive new type of seafloor hydrothermal system

    Mobile Consumer Behavior in Fashion m-Retail: An Eye Tracking Study to Understand Gender Differences

    Get PDF
    © 2020 ACM. With exponential adoption of mobile devices, consumers increasingly use them for shopping. There is a need to understand the gender differences in mobile consumer behavior. This study used mobile eye tracking technology and mixed-method approach to analyze and compare how male and female mobile fashion consumers browse and shop on smartphones. Mobile eye tracking glasses recorded fashion consumers' shopping experiences using smartphones for browsing and shopping on the actual fashion retailer's website. 14 participants successfully completed this study, half of them were males and half females. Two different data analysis approaches were employed, namely a novel framework of the shopping journey, and semantic gaze mapping with 31 Areas of Interest (AOI) representing the elements of the shopping journey. The results showed that male and female users exhibited significantly different behavior patterns, which have implications for mobile website design and fashion m-retail. The shopping journey map framework proves useful for further application in market research
    • 

    corecore