8 research outputs found

    The effects of changing climate on faunal depth distributions determine winners and losers

    No full text
    Changing climate is predicted to impact all depths of the global oceans, yet projections of range shifts in marine faunal distributions in response to changing climate seldom evaluate potential shifts in depth distribution. Marine ectothermsā€™ thermal tolerance is limited by their ability to maintain aerobic metabolism (oxygen- and capacity-limited tolerance), and is functionally associated with their hypoxia tolerance. Shallow-water (<200 m depth) marine invertebrates and fishes demonstrate limited tolerance of increasing hydrostatic pressure (pressure exerted by the overlying mass of water), and hyperbaric (increased pressure) tolerance is proposed to depend on the ability to maintain aerobic metabolism, too. Here, we report significant correlation between the hypoxia thresholds and the hyperbaric thresholds of taxonomic groups of shallow-water fauna, suggesting that pressure tolerance is indeed oxygen-limited. Consequently, it appears that the combined effects of temperature, pressure, and oxygen concentration constrain the fundamental ecological niches (FENs) of marine invertebrates and fishes. Including depth in a conceptual model of oxygen- and capacity-limited FENsā€™ responses to ocean warming and deoxygenation confirms previous predictions made based solely on consideration of the latitudinal effects of ocean warming (e.g. Cheung et al., 2009), that polar taxa are most vulnerable to the effects of climate change, with Arctic fauna experiencing the greatest FEN contraction. In contrast, the inclusion of depth in the conceptual model reveals for the first time that temperate fauna as well as tropical fauna may experience substantial FEN expansion with ocean warming and deoxygenation, rather than FEN maintenance or contraction suggested by solely considering latitudinal range shifts

    Shellfish Face Uncertain Future in High CO2 World: Influence of Acidification on Oyster Larvae Calcification and Growth in Estuaries

    Get PDF
    BACKGROUND: Human activities have increased atmospheric concentrations of carbon dioxide by 36% during the past 200 years. One third of all anthropogenic CO(2) has been absorbed by the oceans, reducing pH by about 0.1 of a unit and significantly altering their carbonate chemistry. There is widespread concern that these changes are altering marine habitats severely, but little or no attention has been given to the biota of estuarine and coastal settings, ecosystems that are less pH buffered because of naturally reduced alkalinity. METHODOLOGY/PRINCIPAL FINDINGS: To address CO(2)-induced changes to estuarine calcification, veliger larvae of two oyster species, the Eastern oyster (Crassostrea virginica), and the Suminoe oyster (Crassostrea ariakensis) were grown in estuarine water under four pCO(2) regimes, 280, 380, 560 and 800 microatm, to simulate atmospheric conditions in the pre-industrial era, present, and projected future concentrations in 50 and 100 years respectively. CO(2) manipulations were made using an automated negative feedback control system that allowed continuous and precise control over the pCO(2) in experimental aquaria. Larval growth was measured using image analysis, and calcification was measured by chemical analysis of calcium in their shells. C. virginica experienced a 16% decrease in shell area and a 42% reduction in calcium content when pre-industrial and end of 21(st) century pCO(2) treatments were compared. C. ariakensis showed no change to either growth or calcification. Both species demonstrated net calcification and growth, even when aragonite was undersaturated, a result that runs counter to previous expectations for invertebrate larvae that produce aragonite shells. CONCLUSIONS AND SIGNIFICANCE: Our results suggest that temperate estuarine and coastal ecosystems are vulnerable to the expected changes in water chemistry due to elevated atmospheric CO(2) and that biological responses to acidification, especially calcifying biota, will be species-specific and therefore much more variable and complex than reported previously
    corecore