255 research outputs found

    Walking notes : memoir with landscape

    Full text link
    University of Technology, Sydney. Faculty of Arts and Social Sciences.Walking Notes: Memoir with Landscape is a nonfiction meditation on landscape, memory, ecology and memoir. It combines personal narrative with enquiry into environmental and cultural histories of the central Australian desert. It seeks to enhance our understanding of placemaking in the instance where the geographies we inhabit are underpinned by a history of dispossession and loss. Visiting sites under discussion was central to my research and writing process. I use personal narrative to form a travelogue, to reflect on landscapes and their histories, and to hold diverse materials together. In the desert, my own past vividly returned to me. I was unprepared for the clarity and force with which it did. I was turned back to people and places I know intimately. When I least expected, I was also compelled to write a eulogy for my father. This thesis is thus a commingled effort to think about personal history along with broader historical concerns, and to respond to the challenge of discovering what webs them together. The thesis asks the following questions: What relationships can I draw between personal and family history, on the one hand, and an appropriate means of developing an intimate and immersed understanding of the desert, on the other hand? Further, what happens to our sense of belonging in a landscape that once belonged to other people? Resting beneath these two areas of exploration, lies the additional query: what are some of the differences between Indigenous and non- Indigenous understandings of the desert landscape? In addressing these questions, one of my central aims is to consider nature and culture as ‘entangled’ rather than as separate and discrete fields. Theorist Felix Guattari speaks of the notion of ‘three ecologies’, or three ecological registers including ‘the environment, social relations and human subjectivity’. In his view all three registers require equal consideration. Encouraged by this idea, my chapters include: a narrative account of bushwalking in central Australia; reflections on my father’s childhood experiences in colonial Indonesia, internment in Japanese prison camps during WWII, and ousting from Indonesia during its struggle for independence; a history of the spread of an exotic grass species, buffel grass (Cenchrus ciliaris) in central Australia; developments in arid zone science and ecology; accounts of cross-cultural contact in the region; and a chapter on the interdisciplinary efforts of anthropologist and biologist Donald Thomson. Through visiting the desert and writing not only about it but from what it prompted in me, Walking Notes enhances our knowledge about placemaking, memory, ecology, and their interrelationships

    Buffel Grass: An Augmented Landscape

    Get PDF
    This article examines, in part, the spread of an introduced grass species, Buffel grass (Cenchrus ciliaris), in central Australia. It is also about immersing oneself in an unfamiliar landscape and environment, and exploring the kind of writing that can emerge from that process. It is informed by James Clifford's proposition in 'Fort Ross Meditation' that history occurs on diverse and overlapping temporal registers such as weather, dust, faultlines, human histories, animal histories and histories of seeds, among others. While the article does not explicitly discuss Clifford’s argument, it is an attempt to explore similarly diverse histories including those generated by arid zone scientists, Albert Namatjira’s efforts to gain a grazing licence, environmental impact of settlement (including erosion, dust storms and species extinction), along with personal narratives impelled by engagement with place. The article does not aim to theorise its content, rather to elaborate knowledge of landscape along with that elusive quality, a ‘sense of place’, through connecting disparate things

    Adaptive Brain Stimulation for Movement Disorders

    Get PDF
    Deep brain stimulation (DBS) has markedly changed how we treat movement disorders including Parkinson's disease (PD), dystonia, and essential tremor (ET). However, despite its demonstrable clinical benefit, DBS is often limited by side effects and partial efficacy. These limitations may be due in part to the fact that DBS interferes with both pathological and physiological neural activities. DBS could, therefore, be potentially improved were it applied selectively and only at times of enhanced pathological activity. This form of stimulation is known as closed-loop or adaptive DBS (aDBS). An aDBS approach has been shown to be superior to conventional DBS in PD in primates using cortical neuronal spike triggering and in humans employing local field potential biomarkers. Likewise, aDBS studies for essential and Parkinsonian tremor are advancing and show great promise, using both peripheral or central sensing and stimulation. aDBS has not yet been trialed in dystonia and yet exciting and promising biomarkers suggest it could be beneficial here too. In this chapter, we will review the existing literature on aDBS in movement disorders and explore potential biomarkers and stimulation algorithms for applying aDBS in PD, ET, and dystonia

    A Clinical Applicable Smartwatch Application for Measuring Hyperkinetic Movement Disorder Severity

    Get PDF
    Measuring the severity of hyperkinetic movement disorders like tremor and myoclonus is challenging. Although many accelerometers are available to quantify movements, the vast majority lacks real-time analysis and an interface that makes it possible to real-time adjust therapy like deep brain stimulation (DBS). Here, we developed a smartwatch / smartphone application that is capable of real-time analysing movement disorder severity. Movement analysis was realised by integrating acceleration values, to velocity and subsequently to distance. Measured distances were compared with a validated accelerometer already applied for quantifying movement disorders. Further validation was done by quantitative assessment of simulated movement disorders in 10 healthy volunteers. Finally, the approach was tested in two patients treated with DBS to quantify the effect of different DBS settings on myoclonus and tremor severity, respectively. The distance measured with the application had a 96% accuracy. This was non-inferior (p = 0.76) compared to accelerometers already clinically applied. Furthermore, (simulated) movement disorder severity could be classified correctly in 93% of the cases. Finally, the method was capable of distinguishing effective from non-effective DBS parameters in two patients. In summary, with our approach we realised an instantaneous and reliable estimation of the severity of movement disorders which can assist in real time titrating therapy like DBS.</p

    Treatment of Parkinson’s Disease:Early, Late, and Combined

    Get PDF
    Medical therapy in de novo Parkinson’s disease typically starts with a dopamine agonist or levodopa in combination with a decarboxylase inhibitor or if symptoms are still very mild with a MAO-B inhibitor. When patients do not (or no longer) respond satisfactorily to these initial therapies, different drugs can be initiated or combined (i.e., “add-on” treatments). These add-on therapies not only comprise oral agents but also intra-jejunal and intra-cutaneous treatments and functional neurosurgical procedures. This chapter starts with the treatment of de novo Parkinson’s disease whereafter indications and expected effects of the different “add-on” therapies will be described. The “add-on” therapies will be described in a hierarchical way and treatment algorithms will be provided based on prevailing symptoms including non-motor symptoms. The symptoms that will be discussed are: (1) bradykinesia and “wearing-OFF, " (2) tremor at rest, (3) dyskinesia, (4) gait and postural symptoms including freezing of gait, and (5) important non-motor symptoms. Finally, a comprehensive add-on treatment algorithm will be provided that takes into account non-motor symptoms that may limit the efficacy and tolerability of the different add-on therapies.</p

    Linking Pathological Oscillations With Altered Temporal Processing in Parkinsons Disease: Neurophysiological Mechanisms and Implications for Neuromodulation.

    Get PDF
    Emerging evidence suggests that Parkinson's disease (PD) results from disrupted oscillatory activity in cortico-basal ganglia-thalamo-cortical (CBGTC) and cerebellar networks which can be partially corrected by applying deep brain stimulation (DBS). The inherent dynamic nature of such oscillatory activity might implicate that is represents temporal aspects of motor control. While the timing of muscle activities in CBGTC networks constitute the temporal dimensions of distinct motor acts, these very networks are also involved in somatosensory processing. In this respect, a temporal aspect of somatosensory processing in motor control concerns matching predicted (feedforward) and actual (feedback) sensory consequences of movement which implies a distinct contribution to demarcating the temporal order of events. Emerging evidence shows that such somatosensory processing is altered in movement disorders. This raises the question how disrupted oscillatory activity is related to impaired temporal processing and how/whether DBS can functionally restore this. In this perspective article, the neural underpinnings of temporal processing will be reviewed and translated to the specific alternated oscillatory neural activity specifically found in Parkinson's disease. These findings will be integrated in a neurophysiological framework linking somatosensory and motor processing. Finally, future implications for neuromodulation will be discussed with potential implications for strategy across a range of movement disorders

    Small-world characteristics of EEG patterns in post-anoxic encephalopathy

    Get PDF
    Post-anoxic encephalopathy (PAE) has a heterogenous outcome which is difficult to predict. At present, it is possible to predict poor outcome using somatosensory evoked potentials in only a minority of the patients at an early stage. In addition, it remains difficult to predict good outcome at an early stage. Network architecture, as can be quantified with continuous electroencephalography (cEEG), may serve as a candidate measure for predicting neurological outcome. Here, we explore whether cEEG monitoring can be used to detect the integrity of neural network architecture in patients with PAE after cardiac arrest. From 56 patients with PAE treated with mild therapeutic hypothermia, 19-channel cEEG data were recorded starting as soon as possible after cardiac arrest. Adjacency matrices of shared frequencies between 1 and 25Hz of the EEG channels were obtained using Fourier transformations. Number of network nodes and connections, clustering coefficient (C), average path length (L), and small-world index (SWI) were derived. Outcome was quantified by the best cerebral performance category (CPC)-score within 6months. Compared to non-survivors, survivors showed significantly more nodes and connections. L was significantly higher and C and SWI were significantly lower in the survivor group than in the non-survivor group. The number of nodes, connections, and the L were negatively correlated with the CPC-score. C and SWI correlated positively with the CPC-score. The combination of number of nodes, connections, C, and L showed the most significant difference and correlation between survivors and non-survivors and CPC-score. Our data might implicate that non-survivors have insufficient distribution and differentiation of neural activity for regaining normal brain function. These network differences, already present during hypothermia, might be further developed as early prognostic markers. The predictive values are however still inferior to current practice parameters. Keywords: small-world network, continuous EEG, post-anoxic encephalopathy, prognosis, resuscitatio

    Interruption of visually perceived forward motion in depth evokes a cortical activation shift from spatial to intentional motor regions

    Get PDF
    Forward locomotion generates a radially expanding flow of visual motion which supports goal-directed walking. In stationary mode, wide-field visual presentation of optic flow stimuli evokes the illusion of forward self-motion. These effects illustrate an intimate relation between visual and motor processing. In the present fMRI study, we applied optic flow to identify distinct interfaces between circuitries implicated in vision and movement. The dorsal premotor cortex (PMd) was expected to contribute to wide-field forward motion flow (FFw), reflecting a pathway for externally triggered motor control. Medial prefrontal activation was expected to follow interrupted optic flow urging internally generated action. Data of 15 healthy subjects were analyzed with Statistical Parametric Mapping and confirmed this hypothesis. Right PMd activation was seen in FFw, together with activations of posterior parietal cortex, ventral V5, and the right fusiform gyms. Conjunction analysis of the transition from wide to narrow forward flow and reversed wide-field flow revealed selective dorsal medial prefrontal activation. These findings point at equivalent visuomotor transformations in locomotion and goal-directed hand movement, in which parietal-premotor circuitry is crucially implicated. Possible implications of an activation shift from spatial to intentional motor regions for understanding freezing of gait in Parkinson's disease are discussed: impaired medial prefrontal function in Parkinson's disease may reflect an insufficient internal motor drive when visual support from optic flow is reduced at the entrance of a narrow corridor. (C) 2010 Elsevier B.V. All rights reserved
    • 

    corecore