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We use direct numerical simulation of the Navier-Stokes equations for a two-phase flow (water and air)

to study the dynamics of the modulational instability of free surface waves and its contribution to the

interaction between the ocean and atmosphere. If the steepness of the initial wave exceeds a threshold

value, we observe wave-breaking events and the formation of large-scale dipole structures in the air.

Because of the multiple steepening and breaking of the waves under unstable wave packets, a train of

dipoles is released in the atmosphere; those dipoles propagate at a height comparable with the wavelength.

The amount of energy dissipated by the breaker in water and air is considered, and contrary to

expectations, we observe that the energy dissipation in air is greater than that in water. The possible

consequences on the wave modeling and on the exchange of aerosols and gases between air and water are

discussed.
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The modulational instability, also known as the
Benjamin Feir instability, is a well-known universal
phenomenon that takes place in many different fields of
physics such as surface gravity waves, plasma physics,
and nonlinear optics (see the recent historical review in
Ref. [1]). The basic idea is that a sufficiently steep sinu-
soidal wave train may become unstable if perturbed by a
long enough perturbation; as a result of the modulation, a
single wave in the group may reach an amplitude that is at
most 3 times the initial one [2,3]. It is a threshold mecha-
nism; therefore, for example, for surface gravity waves at

an infinite water depth, a wave is unstable if 2
ffiffiffi
2

p
k0A0 >

�k=k0, where k0 is the wave number of the sinusoidal wave
(carrier wave), �k is the wave number of the perturbation,
and A0 is the amplitude of the initial wave. The modula-
tional instability, discovered in the 1960s, has recently
received attention because it has been recognized as a
possible mechanism of formation of rogue waves [4,5].
The standard mathematical tool used to describe such
physical phenomena is the nonlinear Schrödinger equation
(NLS), i.e., a weakly nonlinear, narrow band approxima-
tion of some primitive equations of motion. The beauty of
such an equation is that it is integrable, and many analytical
solutions can be written explicitly. For example, breather
solutions [3] have been considered as prototypes of rogue
waves [6,7]; they have been observed experimentally both
in surface gravity waves and in nonlinear optics [2,8–10].

Concerning ocean waves, besides the NLS approach,
computations of nonviscous, fully nonlinear, potential
equations have been performed [11,12]. However, such
an approach only predicts the breaking occurrence but
does not furnish any prediction beyond the breaking onset.

Moreover, so far none of the aforementioned literature has
ever considered the effects of the modulation instability
on the fluid above the free surface. As far as we know, this
is the first attempt to investigate the dynamics of air on
water during the modulation process. This is made possible
by simulating the Navier-Stokes equation for a two-phase
flow. This approach allows us to investigate conditions
that are beyond the formal applicability of the NLS equa-
tion: for example, it is well-known that if the initial wave
steepness is great enough, the NLS equation is not able to
accurately describe the dynamics because wave breaking
takes place [13,14]. For steep waves and particularly
those close to the breaking onset, vorticity is generated
by viscous effects at the interface and by the topological
change of the interface in the case of the bubble entrain-
ment processes. The breaking of surface waves, as an
oceanic phenomenon [15], is important across a very broad
range of applications related to wave dynamics and studies
of atmospheric boundary layer, air-sea interactions, and
upper ocean turbulence mixing, with respective connec-
tions to the large-scale processes including ocean circula-
tion, weather, and climate [16]. Modulational instability
has become also relevant in engineering applications [17]
for studying the interaction of waves and structures.
In the present work, the two fluids are approximated as

a single one with density and viscosity smoothly varying
across the interface. The continuity and momentum equa-
tions (Navier-Stokes) are discretized over a nonstaggered
grid layout with a second-order finite difference scheme.
Cartesian velocities, pressure, and physical properties are
defined at the center of the cells, whereas volume fluxes are
defined at the midpoint of the cell faces. A fractional step
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approach is used: the pressure contribution is neglected
when integrating the momentum equation (predictor step),
and it is reintroduced when the continuity equation is
enforced (corrector step) (see Refs. [18,19] for a more
detailed discussion on the numerical method). The jump
in the fluid properties is spread across a small neighbor-
hood of the interface. A similar spreading is used for the
surface tension forces for which a continuum model is
adopted [20]. The air-water interface is captured as the
zero-level of a distance function from the interface dðx; tÞ
that, at t ¼ 0, is initialized as d > 0 inwater and d < 0 in air.
Fluid properties are related to the distance d by the equation

fðdÞ ¼ fa þ ðfw � faÞH�ðdÞ; (1)

where H�ðdÞ is a smooth step function and � is the half-
thickness of the transition region. The distance function is
advected by the velocity field u by the equation

@d

@t
þ u � rd ¼ 0; (2)

and the interface is located as the d ¼ 0 level. The above
equation is discretized with the same scheme adopted
for the convective terms in the Navier-Stokes equation, and
it is integrated in time using a third-order Runge-Kutta
scheme. At the end of the step, the free surface is located
as the d ¼ 0 level and the distance is reinitialized. The
numerical model has been carefully validated in previous
works [19,21]. The analysis showed that accurate solutions
can be obtained, provided the transition region covers a
sufficiently large number of grid points. Five grid points
are generally enough, [19], but the minimum number
depends to some extent on the Reynolds number.

In our simulations, we consider the standardmodulational
instability process as, for example, the one produced experi-
mentally in Ref. [22]. The initial surface elevation is char-
acterized by a perturbed sinusoidal free surface elevation

�ðx;t¼ 0Þ¼A0 cosðk0xÞþA1½cosðkþxÞþcosðk�xÞ�; (3)

where�ðx; tÞ denotes the free surface elevation at location x
and time t, k0 is the wave number of the carrier wave, and
k� ¼ k0 ��k with �k the wave number of the perturba-
tion. In Eq. (3), A0 and A1 indicate the amplitude of the
fundamental and perturbation components, respectively.
The simulations presented hereafter are characterized by
a steepness �0 ¼ k0A0 that is varied from 0.1 to 0.18, with
a step 0.02. The sideband components are placed at
�k ¼ k0=5, and their amplitude is A1 ¼ 0:1A0. The condi-
tions are essentially similar to those used inRefs. [12,23] and
correspond to the early stages of an Akhmediev breather [3].

Because the typical time scale of the modulational insta-
bility is on the order of 100 periods, to reduce the compu-
tational effort, the initial development of the instability
is described by a fully nonlinear, potential flow model.
Hence, some instant before the onset of the breaking, the
potential flow solution is used as an initial condition for

the Navier-Stokes simulations [24]. We underline that,
different from the present work, in Refs. [18,25] the initial
conditions that lead to breaking were characterized by a
steep (�0 > 0:33) third-order Stokes wave (without any
perturbation) that broke after a few wavelengths, and no
modulational instability process was investigated.
In the following, for convenience, results are presented in

dimensional form. Simulations are carried out for a carrier
wave of wavelength �0¼0:60m, with g¼9:81ms�2. The
computational domain spans from x ¼ �1:5 m to x ¼
1:5 m horizontally and from y ¼ �2 m up to y ¼ 0:6 m
above the still water level vertically. It is discretized with
a uniform grid spacing in the horizontal direction with
�x¼1=1024m. Vertically, from y ¼ �0:15 m to 0.15 m,
the grid spacing is uniform and equal to �x, whereas it
grows geometrically by a factor of � ¼ 1:03 towards the
upper and lower boundaries. This gives a total of 3072�
672 grid cells (numerical simulations have been performed
also on a coarse grid of 1536� 336 in order to see the
effects of the resolution). The total thickness of the tran-
sition region is 0.01 m, so that the density jump is
spread across about 10 grid cells. The surface tension is
included in the Navier-Stokes simulation and taken as
� ¼ 0:073 Nm�1; the following values of densities and
viscosity of air and water are considered: %w ¼
1000 kgm�3, %a¼1:25kgm�3, �w ¼ 10�3 kgm�1 s�1,
and �a ¼ 1:8� 10�5 kgm�1 s�1.
The process observed in the simulation corresponds to

the standard modulational instability (exponential growth
of the sidebands) up to the point where the wave group
reaches its strongly nonlinear regime. For �0 ¼ 0:10, the
perturbation reaches a maximum and then returns back to
the original conditions. This is not the case for �0 � 0:12,
for which wave breaking is observed (see also Ref. [12]).
In Fig. 1, a breaking event is shown for �0 ¼ 0:18. The
sequence shows the formation of the jet, which plunges
onto the water and entraps air. The jet then bounces on the
free surface and plunges again onto the free surface, thus
leading to the entrainment of a second air bubble. A few
droplets of water in air are also visible; a small amount of
vorticity is also released beneath the surface.
Of particular interest is the dynamics of the air flow. In

Fig. 2, we show a sequence of snapshots of the water and
air domain where the formation and detachment of a dipole
structure is highlighted for �0 ¼ 0:16. The fast steepening
of the wave profile and the subsequent breaking causes the
air flow to separate from the crest, giving rise to a large
positive-vorticity structure. This vortex structure interacts
with the free surface leading to the formation of vorticity of
opposite sign; eventually a dipole is generated and prop-
agates upwards under the self-induced velocity. It is worth
noting that the occurrence of flow separation and strong
vorticity production are strongly enhanced by the breaking
occurrence, whereas such phenomena are not found in the
nonbreaking case with �0 ¼ 0:10.
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Because the group velocity is half the phase velocity, each
single wave that passes below the group (at its maximum
height) breaks. The result is that a series of breaking events
take place and dipoles are released into the atmosphere as
shown in Fig. 3. Two things should be noted: (i) the height
of the highest dipoles is on the order of the wavelength, and
(ii) a large amount of vorticity is observed in the air and
not in the water. One major question to be answered, espe-
cially in the spirit of modeling the dissipation term in the
wave forecasting models [26,27], is the amount of energy
dissipated during a wave breaking or a sequence of breaking
events. Therefore, a quantitative estimate of the dissipated
energy both in air and water can be obtained by integrating
the viscous stresses over the air and water domains,

"wdissðtÞ ¼ �w

Z
d��

2eij
@ui
@xj

dxdy; (4)

"adissðtÞ ¼ �a

Z
d<��

2eij
@ui
@xj

dxdy; (5)

where eij is the symmetric part of the strain tensor. In Figs. 4

and 5, we show the dissipation functions in air and water

normalized by the initial energy of the water and wave
period, T, as a function of time, nondimensionalized by T,
for simulations with steepness �0 ¼ 0:12 and �0 ¼ 0:16,
respectively; the origin of the time axis is set to the time at
which the Navier-Stokes simulations take over potential
code simulation. Both curves display a recurrent growth of
the dissipation levels concurrent with the breaking events.
The results indicate that an energy fraction is first transferred
to the air during the steepening and breaking processes and
then dissipated by the viscous stresses afterwards. The
figures also include the simulations performed on a coarser

FIG. 2 (color). Formation of a dipole in air as a consequence of
the wave breaking. Results refer to �0 ¼ 0:16. Vorticity, in s�1,
is represented in color scale.

FIG. 1. Breaking event for �0 ¼ 0:18. Vorticity, in s�1, is
represented in gray scale.

FIG. 3 (color). Vorticity field in a portion of the computational
domain for initial steepness �0 ¼ 0:18. The Supplemental
Material contains an animation of the simulation [29].
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grid. As expected, because of the chaotic behavior of the
Navier-Stokes equation, the breaking (which is related to the
peaks in the figures), being a threshold mechanism, does not
happen exactly in the same place with the same intensity in
the two simulations with different resolutions. Nevertheless,
from both simulations, one can evince that the dissipation is
higher in the air than in the water.

In order to show how relevant the energy dissipation in
air is in comparison to the corresponding dissipation in
water, we consider the following integrated quantity:

EdissðtÞ ¼
Z t

0
"dissðt0Þdt0: (6)

The integral is considered for both water and air. The time
histories of the integrals of the viscous dissipation terms in
the two media are shown in Fig. 6 for the four different
steepnesses. It is interesting to observe that in nondimen-
sional form, the solutions for the four different cases
almost overlap; at the end of the simulations the total

energy fraction dissipated in the air is about three times
that in water.
Discussion.—Modulated waves of different initial steep-

nesses have been analyzed using the two-phase flow NS
equation. For initial steepness greater or equal to 0.12,
multiple breaking events have been observed. Spray is
the natural consequence of the wave breaking. Droplets
of water are thrown in the air; some of these particles are so
small (aerosols) that they can remain in the air for a very
long time, forming condensation nuclei and affecting
incoming solar radiation. Vortices, observed in our simu-
lations, can in principle transport aerosols (not resolved
in our simulations) up to the height of the wave lengths
(this can be even underestimated because of the presence
of the solid boundary at the top of the computational
domain). Such phenomena may be relevant for climate
modeling.
Even bearing in mind the limitations of the numerical

scheme, the results indicate that in the present case (i.e.,
breaking due to modulational instability) the dissipation of
the energy is mostly concentrated in the air side. We stress
that it is a common practice to estimate the energy loss
due to wave breaking by looking at the amount of energy
dissipated in the water; see for example Ref. [28]. Such
measurements are the bases for the construction of the
dissipation function in operational wave forecasting mod-
eling [27]. We also underline that our simulations corre-
spond to the propagation of waves without the presence
of external wind: what would be the consequences of a
turbulent wind on the generation of vorticity during break-
ing event is under investigation.
Another important limitation of the simulations con-

cerns the use of a two-dimensional assumption for the
flow, i.e., long crested waves. We expect that three-
dimensional effects may take place and alter the dynamics
of the breaking process and of the associated vorticity
production.
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FIG. 5. Same as Fig. 4 but for an initial steepness of 0.16.
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