38 research outputs found

    Quantum control theory for coupled 2-electron dynamics in quantum dots

    Full text link
    We investigate optimal control strategies for state to state transitions in a model of a quantum dot molecule containing two active strongly interacting electrons. The Schrodinger equation is solved nonperturbatively in conjunction with several quantum control strategies. This results in optimized electric pulses in the THz regime which can populate combinations of states with very short transition times. The speedup compared to intuitively constructed pulses is an order of magnitude. We furthermore make use of optimized pulse control in the simulation of an experimental preparation of the molecular quantum dot system. It is shown that exclusive population of certain excited states leads to a complete suppression of spin dephasing, as was indicated in Nepstad et al. [Phys. Rev. B 77, 125315 (2008)].Comment: 24 pages, 9 figure

    The Halo and Rings of the Planetary Nebula NGC 40 in the Mid-Infrared

    Full text link
    We present imaging and spectroscopy of NGC 40 acquired using the Spitzer Space Telescope (Spitzer), and the Infrared Space observatory (ISO). These are used to investigate the nature of emission from the central nebular shell, from the nebular halo, and from the associated circumnebular rings. It is pointed out that a variety of mechanisms may contribute to the mid-infrared (MIR) fluxes, and there is evidence for a cool dust continuum, strong ionic transitions, and appreciable emission by polycyclic aromatic hydrocarbons (PAHs). Prior observations at shorter wavelengths also indicate the presence of warmer grains, and the possible contribution of H2 transitions. It is suggested that an apparent jet-like structure to the NE of the halo represents one of the many emission spokes that permeate the shell. The spokes are likely to be caused by the percolation of UV photons through a clumpy interior shell, whilst the jet-like feature is enhanced due to locally elevated electron densities; a result of interaction between NGC 40 and the interstellar medium. It is finally noted that the presence of the PAH, 21 microns and 30 microns spectral features testifies to appreciable C/O ratios within the main nebular shell. Such a result is consistent with abundance determinations using collisionally excited lines, but not with those determined using optical recombination linesComment: 13 pages, 8 figures, Accepted for publication in MNRAS. 37 pages in arXi

    The circumstellar envelope of the C-rich post-AGB star HD 56126

    Get PDF
    We present a detailed study of the circumstellar envelope of the post-asymptotic giant branch ``21 micron object'' HD 56126. We build a detailed dust radiative transfer model of the circumstellar envelope in order to derive the dust composition and mass, and the mass-loss history of the star. To model the emission of the dust we use amorphous carbon, hydrogenated amorphous carbon, magnesium sulfide and titanium carbide. We present a detailed parametrisation of the optical properties of hydrogenated amorphous carbon as a function of H/C content. The mid-infrared imaging and spectroscopy is best reproduced by a single dust shell from 1.2 to 2.6 arcsec radius around the central star. This shell originates from a short period during which the mass-loss rate exceeded 10^(-4) M_sun/yr. We find that the strength of the ``21'' micron feature poses a problem for the TiC identification. The low abundance of Ti requires very high absorption cross-sections in the ultraviolet and visible wavelength range to explain the strength of the feature. Other nano-crystalline metal carbides should be considered as well. We find that hydrogenated amorphous carbon in radiative equilibrium with the local radiation field does not reach a high enough temperature to explain the strength of the 3.3-3.4 and 6-9 micron hydrocarbon features relative to the 11-17 micron hydrocarbon features. We propose that the carriers of these hydrocarbon features are not in radiative equilibrium but are transiently heated to high temperature. We find that 2 per cent of the dust mass is required to explain the strength of the ``30'' micron feature, which fits well within the measured atmospheric abundance of Mg and S. This further strengthens the MgS identification of the ``30'' micron feature.Comment: 20 Pages, 10 Figures, accepted for publication in Astronomy and Astrophysic

    Si doped GaAs/AlGaAs terahertz detector and phonon effect on the responsivity

    No full text
    Abstract Terahertz detection capability of an n-type heterojunction interfacial work function internal photoemission (HEIWIP) detector is demonstrated. Threshold frequency, f 0 , of 3.2 THz (93 lm) was obtained by using n-type GaAs emitter doped to 1 · 10 18 cm À3 and Al 0.04 Ga 0.96 As single barrier structure. The detector shows a broad spectral response from 30 to 3.2 THz (10-93 lm) with peak responsivity of 6.5 A/W at 7.1 THz under a forward bias field of 0.7 kV/cm at 6 K. The peak quantum efficiency and peak detectivity are 1919% and 5.5 · 10 8 Jones, respectively under a bias field of 0.7 kV/cm at 6 K. In addition, the detector can be operated up to 25 K
    corecore