We investigate optimal control strategies for state to state transitions in a
model of a quantum dot molecule containing two active strongly interacting
electrons. The Schrodinger equation is solved nonperturbatively in conjunction
with several quantum control strategies. This results in optimized electric
pulses in the THz regime which can populate combinations of states with very
short transition times. The speedup compared to intuitively constructed pulses
is an order of magnitude. We furthermore make use of optimized pulse control in
the simulation of an experimental preparation of the molecular quantum dot
system. It is shown that exclusive population of certain excited states leads
to a complete suppression of spin dephasing, as was indicated in Nepstad et al.
[Phys. Rev. B 77, 125315 (2008)].Comment: 24 pages, 9 figure