459 research outputs found

    Intrinsic defects and dopability of zinc phosphide

    Full text link

    Modeling Airline Frequency Competition for Airport Congestion Mitigation

    Get PDF
    Demand often exceeds capacity at congested airports. Airline frequency competition is partially responsible for the growing demand for airport resources. We propose a game-theoretic model for airline frequency competition under slot constraints. The model is solved to obtain a Nash equilibrium using a successive optimizations approach, wherein individual optimizations are performed using a dynamic programming-based technique. The model predictions are validated against actual frequency data, with the results indicating a close fit to reality. We use the model to evaluate different strategic slot allocation schemes from the perspectives of the airlines and the passengers. The most significant result of this research shows that a small reduction in the total number of allocated slots translates into a substantial reduction in flight and passenger delays and also a considerable improvement in airlines' profits

    Constraining the Jurassic extent of Greater India: Tectonic evolution of the West Australian margin

    Get PDF
    Alternative reconstructions of the Jurassic northern extent of Greater India differ by up to several thousand kilometers. We present a new model that is constrained by revised seafloor spreading anomalies, fracture zones and crustal ages based on drillsites/dredges from all the abyssal plains along the West Australian margin and the Wharton Basin, where an unexpected sliver of Jurassic seafloor (153 Ma) has been found embedded in Cretaceous (95 My old) seafloor. Based on fracture zone trajectories, this NeoTethyan sliver must have originally formed along a western extension of the spreading center that formed the Argo Abyssal Plain, separating a western extension of West Argoland/West Burma from Greater India as a ribbon terrane. The NeoTethyan sliver, Zenith and Wallaby plateaus moved as part of Greater India until westward ridge jumps isolated them. Following another spreading reorganization, the Jurassic crust resumed migrating with Greater India until it was re-attached to the Australian plate ∼95 Ma. The new Wharton Basin data and kinematic model place strong constraints on the disputed northern Jurassic extent of Greater India. Late Jurassic seafloor spreading must have reached south to the Cuvier Abyssal Plain on the West Australian margin, connected to a spreading ridge wrapping around northern Greater India, but this Jurassic crust is no longer preserved there, having been entirely transferred to the conjugate plate by ridge propagations. This discovery constrains the major portion of Greater India to have been located south of the large-offset Wallaby-Zenith Fracture Zone, excluding much larger previously proposed shapes of Greater India

    Anthropometric and blood parameters for the prediction of NAFLD among overweight and obese adults

    Get PDF
    Backround: Non-alcoholic fatty liver disease (NAFLD) comprises non-progressive steatosis and non-alcoholic steatohepatitis (NASH), the latter of which may cause cirrhosis and hepatocellular carcinoma (HCC). As NAFLD detection is imperative for the prevention of its complications, we evaluated whether a combination of blood-based biomarkers and anthropometric parameters can be used to predict NAFLD among overweight and obese adults. Methods: 143 overweight or obese non-smokers free of diabetes (50% women, age: 35–65 years) were recruited. Anthropometric indices and routine biomarkers of metabolism and liver function were measured to predict magnetic resonance (MR) - derived NAFLD by multivariable logistic regression models. In addition, we evaluated to which degree the use of more novel biomarkers (adiponectin, leptin, resistin, C-reactive protein, TNF-α, IL-6, IL-8 and interferon-γ) could improve prediction models. Results: NAFLD was best predicted by a combination of age, sex, waist circumference, ALT, HbA1c, and HOMA-IR at an area under the receiver operating characteristic curve (AUROC) of 0.87 (95% CI: 0.81, 0.93) before and 0.85 (95% CI: 0.78, 0.91) after internal bootstrap validation. The use of additional biomarkers of inflammation and metabolism did not improve NAFLD prediction. Previously published indices predicted NAFLD at AUROCs between 0.71 and 0.82. Conclusions: The AUROC of > 0.8 obtained by our regression model suggests the feasibility of a non-invasive detection of NAFLD by anthropometry and circulating biomarkers, even though further increments in the capacity of prediction models may be needed before NAFLD indices can be applied in routine clinical practice

    Repurposing anthelmintic agents to eradicate resistant leukemia

    Get PDF
    Despite rapid progress in genomic profiling in acute lymphoblastic leukemia (ALL), identification of actionable targets and prediction of response to drugs remains challenging. To identify specific vulnerabilities in ALL, we performed a drug screen using primary human ALL samples cultured in a model of the bone marrow microenvironment combined with high content image analysis. Among the 2487 FDA-approved compounds tested, anthelmintic agents of the class of macrocyclic lactones exhibited potent anti-leukemia activity, similar to the already known anti-leukemia agents currently used in induction chemotherapy. Ex vivo validation in 55 primary ALL samples of both precursor B cell and T-ALL including refractory relapse cases confirmed strong anti-leukemia activity with IC50 values in the low micromolar range. Anthelmintic agents increased intracellular chloride levels in primary leukemia cells, inducing mitochondrial outer membrane depolarization and cell death. Supporting the notion that simultaneously targeting cell death machineries at different angles may enhance the cell death response, combination of anthelmintic agents with the BCL-2 antagonist navitoclax or with the chemotherapeutic agent dexamethasone showed synergistic activity in primary ALL. These data reveal anti-leukemia activity of anthelmintic agents and support exploiting drug repurposing strategies to identify so far unrecognized anti-cancer agents with potential to eradicate even refractory leukemia

    KRAS and CREBBP mutations: a relapse-linked malicious liaison in childhood high hyperdiploid acute lymphoblastic leukemia

    Get PDF
    High hyperdiploidy defines the largest genetic entity of childhood acute lymphoblastic leukemia (ALL). Despite its relatively low recurrence risk, this subgroup generates a high proportion of relapses. The cause and origin of these relapses remains obscure. We therefore explored the mutational landscape in high hyperdiploid (HD) ALL with whole-exome (n=19) and subsequent targeted deep sequencing of 60 genes in 100 relapsing and 51 non-relapsing cases. We identified multiple clones at diagnosis that were primarily defined by a variety of mutations in receptor tyrosine kinase (RTK)/Ras pathway and chromatin-modifying genes. The relapse clones consisted of reappearing as well as new mutations, and overall contained more mutations. Although RTK/Ras pathway mutations were similarly frequent between diagnosis and relapse, both intergenic and intragenic heterogeneity was essentially lost at relapse. CREBBP mutations, however, increased from initially 18-30% at relapse, then commonly co-occurred with KRAS mutations (P<0.001) and these relapses appeared primarily early (P=0.012). Our results confirm the exceptional susceptibility of HD ALL to RTK/Ras pathway and CREBBP mutations, but, more importantly, suggest that mutant KRAS and CREBBP might cooperate and equip cells with the necessary capacity to evolve into a relapse-generating clone

    Long non-coding RNAs defining major subtypes of B cell precursor acute lymphoblastic leukemia

    Get PDF
    BACKGROUND: Long non-coding RNAs (lncRNAs) have emerged as a novel class of RNA due to its diverse mechanism in cancer development and progression. However, the role and expression pattern of lncRNAs in molecular subtypes of B cell acute lymphoblastic leukemia (BCP-ALL) have not yet been investigated. Here, we assess to what extent lncRNA expression and DNA methylation is driving the progression of relapsed BCP-ALL subtypes and we determine if the expression and DNA methylation profile of lncRNAs correlates with established BCP-ALL subtypes. METHODS: We performed RNA sequencing and DNA methylation (Illumina Infinium microarray) of 40 diagnosis and 42 relapse samples from 45 BCP-ALL patients in a German cohort and quantified lncRNA expression. Unsupervised clustering was applied to ascertain and confirm that the lncRNA-based classification of the BCP-ALL molecular subtypes is present in both our cohort and an independent validation cohort of 47 patients. A differential expression and differential methylation analysis was applied to determine the subtype-specific, relapse-specific, and differentially methylated lncRNAs. Potential functions of subtype-specific lncRNAs were determined by using co-expression-based analysis on nearby (cis) and distally (trans) located protein-coding genes. RESULTS: Using an integrative Bioinformatics analysis, we developed a comprehensive catalog of 1235 aberrantly dysregulated BCP-ALL subtype-specific and 942 relapse-specific lncRNAs and the methylation profile of three subtypes of BCP-ALL. The 1235 subtype-specific lncRNA signature represented a similar classification of the molecular subtypes of BCP-ALL in the independent validation cohort. We identified a strong correlation between the DUX4-specific lncRNAs and genes involved in the activation of TGF-β and Hippo signaling pathways. Similarly, Ph-like-specific lncRNAs were correlated with genes involved in the activation of PI3K-AKT, mTOR, and JAK-STAT signaling pathways. Interestingly, the relapse-specific lncRNAs correlated with the activation of metabolic and signaling pathways. Finally, we found 23 promoter methylated lncRNAs epigenetically facilitating their expression levels. CONCLUSION: Here, we describe a set of subtype-specific and relapse-specific lncRNAs from three major BCP-ALL subtypes and define their potential functions and epigenetic regulation. The subtype-specific lncRNAs are reproducible and can effectively stratify BCP-ALL subtypes. Our data uncover the diverse mechanism of action of lncRNAs in BCP-ALL subtypes defining which lncRNAs are involved in the pathogenesis of disease and are relevant for the stratification of BCP-ALL subtypes
    • …
    corecore