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Abstract

Background: Long non-coding RNAs (lncRNAs) have emerged as a novel class of RNA due to its diverse
mechanism in cancer development and progression. However, the role and expression pattern of lncRNAs in
molecular subtypes of B cell acute lymphoblastic leukemia (BCP-ALL) have not yet been investigated. Here, we
assess to what extent lncRNA expression and DNA methylation is driving the progression of relapsed BCP-ALL
subtypes and we determine if the expression and DNA methylation profile of lncRNAs correlates with established
BCP-ALL subtypes.

Methods: We performed RNA sequencing and DNA methylation (Illumina Infinium microarray) of 40 diagnosis and
42 relapse samples from 45 BCP-ALL patients in a German cohort and quantified lncRNA expression. Unsupervised
clustering was applied to ascertain and confirm that the lncRNA-based classification of the BCP-ALL molecular
subtypes is present in both our cohort and an independent validation cohort of 47 patients. A differential
expression and differential methylation analysis was applied to determine the subtype-specific, relapse-specific, and
differentially methylated lncRNAs. Potential functions of subtype-specific lncRNAs were determined by using co-
expression-based analysis on nearby (cis) and distally (trans) located protein-coding genes.

Results: Using an integrative Bioinformatics analysis, we developed a comprehensive catalog of 1235 aberrantly
dysregulated BCP-ALL subtype-specific and 942 relapse-specific lncRNAs and the methylation profile of three subtypes
of BCP-ALL. The 1235 subtype-specific lncRNA signature represented a similar classification of the molecular subtypes
of BCP-ALL in the independent validation cohort. We identified a strong correlation between the DUX4-specific
lncRNAs and genes involved in the activation of TGF-β and Hippo signaling pathways. Similarly, Ph-like-specific
lncRNAs were correlated with genes involved in the activation of PI3K-AKT, mTOR, and JAK-STAT signaling pathways.
Interestingly, the relapse-specific lncRNAs correlated with the activation of metabolic and signaling pathways. Finally,
we found 23 promoter methylated lncRNAs epigenetically facilitating their expression levels.
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Conclusion: Here, we describe a set of subtype-specific and relapse-specific lncRNAs from three major BCP-ALL
subtypes and define their potential functions and epigenetic regulation. The subtype-specific lncRNAs are reproducible
and can effectively stratify BCP-ALL subtypes. Our data uncover the diverse mechanism of action of lncRNAs in BCP-
ALL subtypes defining which lncRNAs are involved in the pathogenesis of disease and are relevant for the stratification
of BCP-ALL subtypes.

Keywords: BCP-ALL subtypes, DUX4, Ph-like, NH-HeH, Subtype-specific lncRNAs, Key signaling pathways, Relapse-
specific lncRNAs, Epigenetically altered lncRNAs,

Background
B cell precursor acute lymphoblastic leukemia
(BCP-ALL) is the most prevalent disease in children but
affects also adults. Despite improvements in treatment
regimens such as chemotherapy and allogeneic
hematopoietic stem cell transplantation, the prognosis
remains poor for patients in high-risk groups and at re-
lapse [1]. Various risk subtypes have been established
based on the cytogenetic analysis and molecular genetics
studies. These subtypes are classified based on the pres-
ence of high hyperdiploidy (51–65 chromosomes) [2],
hypodiploidy (less than 44 chromosomes) [3], and fusion
genes, such as BCR-ABL, ETV6-RUNX, and MLL [4].
About 70–80% of both adults and pediatric cases of
BCP-ALL constitute these subtypes, although the fre-
quency may differ [5].
Recent efforts taking advantage of whole transcriptome

sequencing (RNA-seq) have refined this classification by
identifying novel BCP-ALL subtypes [6]. RNA-seq ana-
lyses identified cytogenetically non-detectable recurrent
rearrangements and gene fusions, which allowed
characterization of additional subtypes based on distinct
gene expression profiles [7]. For example, the DUX4 sub-
type is defined mainly by the IGH-DUX4 [8] gene fusions;
the Ph-like subtype is a high-risk subtype with a gene ex-
pression profile similar to Ph-positive ALL, but lacking
BCR-ABL1 fusion gene [9]; and the near haploid/high
hyperdiploid (NH-HeH) (51–67 chromosomes) subtype is
a common subtype [10, 11] comprising 30% of all
pediatric BCP-ALL. These subtypes are clinically relevant
with distinct gene expression profile and have been widely
studied in the recent past.
Nevertheless, we are far from complete understanding

of BCP-ALL subtypes and their heterogeneity and its as-
sociated molecular mechanisms, which pose a major
challenge for improving diagnosis and therapy. Recent
studies have suggested that long non-coding RNAs
(lncRNAs) and small non-coding RNAs (e.g., micro-
RNAs) play a key role in development and progression
of leukemia [11] and thus constitute as new biomarkers
and potential targets for novel therapies [12].
lncRNAs are arbitrarily defined as transcripts longer

than 200 bp and lacking an extended protein-coding

open reading frame (ORF). It has become apparent that
lncRNAs are frequently spliced and polyadenylated and
are mainly transcribed by RNA polymerase II [13].
lncRNA expression has been reported as highly
tissue-specific even though the expression abundance is
generally lower compared to protein-coding genes [14].
The expression specificity has been extended to a wide
variety of physiological and pathological mechanisms
like cancer development and pluripotency [15]. lncRNAs
can act either proximally (in the cis region) or distally
(in the trans region) interfering in the transcriptional
regulation of protein-coding genes [16]. Like proteins,
various lncRNAs are attributed to oncogenic or
tumor-suppressive activities exerting various cellular
functions [17, 18]. In addition, lncRNAs regulate gene
expression at the epigenetic [19] and post-transcription
levels [20]. Genome-wide association studies in cancer
have disclosed that 80% of cancer-associated
single-nucleotide polymorphisms (SNPs) [21] are in
non-coding regions [22], including lncRNAs, suggesting
that a significant portion of the genetic etiology of can-
cer can be related to lncRNAs. Moreover, lncRNAs are
reported to be useful for disease prognosis, exemplified
by the lncRNA HOTAIR [23] (HOX transcript antisense
RNA), which is upregulated in acute myeloid leukemia
(AML) patients.
So far, the majority of profiling studies explored the

role of single lncRNAs in leukemia including AML [24],
chronic lymphocytic leukemia (CLL) [25], and pediatric
ALL [21, 26]. Yet a comprehensive genomic and epigen-
etic delineation of lncRNA deregulations in BCP-ALL
subtypes and their molecular and functional insights
during the evolution of the disease are lacking.
In the present study, we explored lncRNA landscapes

in DUX4, Ph-like, and NH-HeH BCP-ALL subtypes and
extracted novel biological and functional insights of
BCP-ALL subtype-specific lncRNAs and their epigenetic
activity. On the basis of RNA-seq transcriptional and
DNA methylation survey of lncRNAs, we have deter-
mined 1235 subtype-specific and relapse-specific
lncRNAs. Interestingly, a subset of lncRNAs were epige-
netically altered. From our in-depth analyses, we have
inferred the potential functions of subtype-specific
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lncRNAs. Overall, this work provides a most compre-
hensive and integrative insight that highlight the impact
of lncRNAs on relevant pathways that are dysregulated
in the molecular subgroups of BCP-ALL and may pro-
vide new approaches for prognosis and treatment.

Method
Patient samples
The patients (n = 45, Table 1) included in this study were
selected based on the lack of fusion genes detectable by
routine diagnostic workup (BCR-ABL, MLL transloca-
tions, ETV6-RUNX1) from 25 pediatric and 20 adult pa-
tients. From these patients, we had collected 40 bone
marrow samples at initial diagnosis (ID) and 42 bone
marrow samples at relapse (REL). All patients were
treated in population-based German study trials
(GMALL for adult and BFM for pediatric patients) [26].
The study was designed to include relapsed BCP-ALL
patients with paired samples from diagnosis and relapse.
Due to poor RNA quality, selected samples had to be ex-
cluded from further downstream analysis: these included
5 samples from ID and 3 samples from REL with insuffi-
cient quality of RNA-seq data. Out of 45 patients, 37 pa-
tients had paired samples. A written informed consent
to participate in these trails according to the Declaration
of Helsinki was obtained from all patients. The studies
were approved by the ethics board of Charité, Berlin.

Overview of RNA-seq and DNA methylation array data
To generate transcriptome profiles of patient samples,
mRNA was isolated by using Trizol reagent (Life Tech-
nologies, Grand Island, NY) procedure from the bone
marrow mononuclear cells (MNCs) of the ID and REL
samples. The paired-end RNA sequencing was performed
on an Illumina HiSeq4000 platform (multiplexing) in the

high-throughput sequencing core facility, German Cancer
Research Center, Heidelberg, Germany. The RNA-seq was
performed by using six samples per lane, which resulted
in an average of 64 million mapped paired reads per sam-
ple. For methylation, genomic DNA was isolated using
unstranded Allprep extraction (Qiagen, Hilden, Germany)
from the bone marrow of same patients (ID and REL sam-
ples) was then hybridized onto an Illumina Infinium
HumanMethylation450K. From the DNA methylation
chip, we identified 60,021 probes annotated to 7190
lncRNAs.

RNA-seq read alignment and quantitative extraction
The STAR aligner (version 2.4.0.1) [27] (2-pass align-
ment parameters) was used to align paired-end reads to
the human genome reference. The human genome refer-
ence files used for processing RNA-seq samples were the
hg19 (GRCh37) genome version for alignment and tran-
script annotation from GENCODE version 19 (equiva-
lent Ensembl GRCh37). The transcriptome construction
and gene-level counts for each sample were obtained
using StringTie. The read count information from the
files generated by StringTie was extracted using the
“prepDE.py” python script provided by the StringTie
[28]. We detected 84% of 13,860 lncRNAs (including
23,898 transcripts) annotated by GENCODE (V19) from
our samples (FPKM > 0 for multi-exon lncRNAs and
FPKM > 0 for single exonic lncRNAs) showing that our
sequencing depth was good.

Sample clustering and differential expression analysis for
subtype-specific and relapse-specific lncRNAs
We performed PCA using the prcomp R function on
13,860 lncRNAs from RNA-seq and 60,021 CpGs on
7190 lncRNAs from DNA methylation datasets. The
PCA plots were plotted using python matplotlib axes3D

Table 1 The patient information of the discovery cohort

Patient and sample information

Patients (n = 45)
Paired (ID/REL): n = 37
Unpaired (ID or REL only): n = 8

Samples (n = 82)
ID: 40
REL: 42

Patients in Subtypes Samples ID/REL (paired/unpaired)

DUX4 (n = 12) n = 23 ID (n = 12)
REL (n = 11)

Paired (n = 11)
Unpaired (n = 1; ID only)

Ph-like (n = 11) n = 21 ID (n = 10)
REL (n = 11)

Paired (n = 10)
Unpaired (n = 1; REL only)

NH-HeH (n = 9) n = 16 ID (n = 7)
REL (n = 9)

Paired (n = 7)
Unpaired (n = 2; REL only)

LH (n = 3) n = 6 ID (n = 3)
REL (n = 3)

Paired (n = 3)
Unpaired (n = 0)

Unassigned (n = 10) n = 16 ID (n = 8)
REL (n = 8)

Paired (n = 6)
Unpaired (n = 4; 2 ID/2 REL only)

The table defines the 45 patients, the number of samples from each subtype, and the number of paired and unpaired samples. We obtained 36 and 46 samples
from 21 adult and 24 pediatric patients, respectively
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function. The R bioconductor package Linear Models for
Microarray (LIMMA) Voom [29] was used on gene-level
expression data for identifying the subtype-specific and
relapse-specific differentially expressed (DE) lncRNAs.
The subtype-specific DE lncRNAs were identified by
implementing separate design matrix for the three sub-
types (DUX4, Ph-like, and NH-HeH). For example, for
DUX4 subtype, we used 23 samples from DUX4 subtype
as treatment group and 59 samples from the rest of cohort
as control group to perform the subtype-specific analysis.
Within our cohort (82 samples from 45 patients), some
patients had imbalances in matching ID or REL samples.
For example, 2 pediatric and 6 adult patients had no
matching ID or REL samples (Additional file 1: Table S1).
LIMMA voom leveraged the sample imbalances and
confounders (patient and samples) with its duplicatecorre-
lation function. We implemented duplicatecorrelation
function, which addressed all patient effects by estimating
correlations of multiple samples from the same patient
while allowing us to compare across the subtypes. Add-
itionally, we included the ID and REL time factors into the
design (makeContrasts) to avoid the inflation of the vari-
ance due to time factor for each subtype.
The relapse-specific DE lncRNAs within each subtype

were identified by analyzing DE lncRNAs ID versus REL
samples within each subtype separately. The significant
DE genes were assigned based on the p value < 0.01 and
fold change of ≥ ±1.5. The lncRNAs from GENCODE
version 19 (equivalent Ensembl GRCh37) were used as
reference annotation. The heatmaps and correlation-
based (Spearman method) hierarchical clustering of DE
lncRNAs were performed on z-score transformed
LIMMA-normalized gene expression values using the R
Bioconductor package ComplexHeatmap. The validation
of 1235 subtype-specific was performed by unsupervised
hierarchical clustering on an independent BCP-ALL co-
hort (validation cohort) of 47 BCP-ALL patients.

Differential methylation data analysis
The ID and REL samples from the same patients were
assayed with the Illumina 450k methylation array. All
the beta values have been normalized using the
Subset-quantile Within Array Normalization (SWAN)
method using Partek® Genomics Suite®. In order to de-
tect differentially methylated regions, we used the R
package bumphunter [30] using the most variant quar-
tile of the CpG probes. Bumphunter searches for differ-
entially methylated regions in an annotation-unbiased
manner. Separate bumphunter runs have been per-
formed for ID and REL samples for every three subtypes
(DUX4, Ph-like, and NH-HeH), comparing each subtype
versus the rest of the cohort on the M value. The cutoff
was chosen individually at 0.95, the quantile used for
picking the cutoff using the permutation distribution. In

addition to that, 1000 resamples were performed for
computing the null distribution. We associated the dif-
ferentially methylated regions from three BCP-ALL sub-
types using HOMER (hypergeometric optimization of
motif enrichment) suite of tool with the reference file
GRCh37.74, using the -gene parameter. The HOMER tool
provided us with annotation of each probe; we separated
lncRNAs from the output. The genomic regions were di-
vided into promoter (± 2 kb from transcription start site,
transcription termination site, TSS) and gene body. The
gene body was defined if the CpGs were annotated in
exonic, intronic, or TTS. The regions mapped to
lncRNAs were then used for analysis. The significantly
differentially hyper-methylated (methylation difference
value ≥ 0.2; P value ≤ 0.05) and hypo-methylated (methy-
lation difference value ≤ 0; P value ≤ 0.05) regions were
used for further analysis. The intronic and intergenic dif-
ferentially methylated (DM) lncRNAs were then mapped
using “BedTools” with the B lymphocyte cell line “wgEn-
codeBroadHmmGm12878HMM.bed” in order to find
the epigenetic markers. The significance of enrichment
was calculated using Fisher’s exact test. The epigeneti-
cally altered lncRNAs were assigned if promoter methyl-
ated lncRNAs were differentially expressed and their
DNA methylation values (log-transformed beta values)
and expression values (log-transformed FPKM values)
are correlated. The most significant correlations (Pear-
son correlations coefficient, two-tailed P value ≤ 0.05)
were classified, later called as epigenetically altered
lncRNAs.

Functional predictions using guilt-by-association
approach
In our study, we used the “guilt-by-association” [31] ap-
proach by establishing the pairwise expression correla-
tions between DE lncRNAs (from all BCP-ALL
subtypes) and its cis and trans protein-coding (PC) genes
in order to predict the functions of subtype-specific
lncRNAs. We determined the cis and trans PC genes of
DE lncRNAs using the GREAT tool (version v3.0.0) [32].
All PC genes from GENCODE v19 annotation (n =
20,698) were used in the analysis. The individual cis and
trans genes for each DE lncRNAs were located within a
genomic window of 100 kb and greater than 100 kb, re-
spectively. From each dataset, we then computed the
pairwise expression correlation using Pearson correl-
ation method between each lncRNAs and its cis and
trans coding gene. The significantly co-expressed PC
genes (Pearson correlation coefficient ≥ 0.55 and
two-tailed P value ≤ 0.05) were further used for func-
tional enrichment analysis using GeneSCF v1.0 [33]. The
functional enrichment analysis was performed using the
KEGG database with a background of all protein-coding
genes from GENCODE v19 [34] (20,345). The functional
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terms were considered significant only if it is enriched
with P value ≤ 0.05.

Results
Unique lncRNA expression profiles characterize BCP-ALL
subtypes
To identify BCP-ALL subtype-specific lncRNAs, we ana-
lyzed transcriptome profiles from paired initial diagnosis
(ID) and relapse (REL) samples of 25 pediatric and 20
adult BCP-ALL patients lacking known chromosomal
translocations like BCR-ABL, KMT2A, and ETV6-
RUNX1. Based on expression signatures of PC gene and
fusion gene detection by RNA expression and DNA
methylation profiles, the samples (n = 82) were classified
into different molecular subtypes (Additional file 1:
Table S1), namely, double homeobox, 4 (DUX4) (n = 23),
Ph-like (n = 21), near haploid or high hyperdiploid
(NH-HeH; n = 16), and low-hypodiploid (LH; n = 6) and
others (n = 16).

The unsupervised clustering using principle compo-
nent analysis (PCA) on the expression (FPKM value)
of 13,860 GENCODE lncRNAs revealed a distinct
separation into three major BCP-ALL subtypes corre-
sponding to DUX4, Ph-like, and NH-HeH (Fig. 1a).
There was no change in subgroup classification from
initial diagnosis to relapse, with all samples clustering
consistently to one subgroup and no samples changed
subgroup from ID to REL. This observation is in con-
cordance to the predefined molecular classification
based on PC expression signatures. In particular, sam-
ples of the DUX4 subtype showed robust separation
to the remaining samples highlighting a
subtype-specific lncRNA signature.
When the level of lncRNA gene expression profile

across all BCP-ALL samples was compared with that of
protein-coding genes, the former generally showed lower
expression levels to the latter [37] (Additional file 2: Fig-
ure S1a, Additional file 1: Table S1). To unveil DE
lncRNAs across these three major molecular BCP-ALL

Fig. 1 BCP-ALL subtype-specific lncRNA expression signatures on discovery and validation cohorts. a PCA plot constructed from expression FPKM
values of lncRNAs from 82 BCP-ALL samples obtained from RNA-seq. Each point represents a BCP-ALL sample. DUX4, Ph-like, NH-HeH, LH
subtype, and others are represented by orange, rose, blue, green, and gray, respectively. b Heatmap illustrates unsupervised hierarchical clustering
on 1235 DE subtype-specific lncRNAs (absolute fold change ≥ ± 1.5, P value ≤ 0.01) based on z-score transformed LIMMA normalized expression
values. The subtype-specific lncRNAs from DUX4, Ph-like, and NH-HeH subytpes displayed in the plot. c Unsupervised hierarchical clustering of DE
subtype-specific 1235 lncRNAs on the validation cohort (n = 47) with z-score transformed FPKM values. The heatmap represents three distinctive
clusters of DUX4, Ph-like, and NH-HeH subtypes
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subtypes, we performed a DE analysis between the sub-
types. We obtained 1235 significant DE subtype-specific
lncRNAs (P value ≤ 0.01 and absolute fold change ≥ ±
1.5) defining signatures of three subtypes (Fig. 1b, Add-
itional file 2: Figure S2a-c, Additional file 1: Table S1).
Of these, 24 lncRNAs were commonly detected in all 3
BCP-ALL subtypes. Out of the 1235 subtype-specific
lncRNAs, 23 overlapped with previously defined
cancer-related lncRNAs in the lnc2cancer database [35]
(Additional file 1: Table S1). For example, the oncogenic
lncRNAs PVT1 [36] and GAS5 [37] were differentially
upregulated in the DUX4 subgroup, and EGOT [38] was
upregulated DE in Ph-like subgroup.

Validation of the subtype-specific lncRNAs using an
independent BCP-ALL cohort
To ascertain if this subtype-specific lncRNAs (n = 1235)
could stratify the molecular subtypes of BCP-ALL sam-
ples beyond our discovery cohort (n = 45), we performed
an unsupervised hierarchical clustering on an independ-
ent validation cohort (n = 47; Additional file 1: Table
S1). Patients from the validation cohort included only
adult patients with samples collected at ID. The result
was a robust separation of DUX4, Ph-like, and NH-HeH
(Fig. 1c) subtypes, which is in concordance with previous
observations. The lncRNA signature classified correctly
on our validation cohort with 100% sensitivity and speci-
ficity. This validation indicates the ability of our
subtype-specific lncRNAs in stratification of subtypes in
BCP-ALL.

Identification and inferred functions of lncRNAs
associated with molecular subtypes of BCP-ALL
As lncRNAs can exert their function by regulating
protein-coding genes located at their in cis and/or trans
[39–42] regions, we performed functional enrichment
analyses using guilt-by-association approach based on
the correlation between neighboring (cis, within ±100
kb) and distally (trans, > ± 100 kb window) located
protein-coding (PC) genes of the subtype-specific
lncRNAs (see the “Method” section). Expression of both
cis and trans PC genes showed a higher tendency to-
wards positive correlation with the expression of the
corresponding lncRNAs (Table 2).

Out of these significantly co-expressed (Pearson cor-
relation coefficient ≥ 0.55, two-tailed P value ≤ 0.05) cis
protein-coding genes we identified, 58 DUX4- and 24
Ph-like-specific lncRNAs demonstrated activation of key
signaling pathways involved in proliferation, apoptosis,
and differentiation in leukemia (Additional file 3: Table
S2). For example, in the cis-based co-expression analysis,
we identified a strong correlation between DUX4-
specific lncRNAs and genes involved in the TGF-beta,
Hippo, and P53 signaling pathways (Fig. 2a, Add-
itional file 3: Table S2). Ph-like-specific lncRNAs were
correlated with genes involved in JAK-STAT, mTOR,
and PIK3-AKT signaling pathways (Fig. 2c, Add-
itional file 3: Table S2). The trans-based co-expression
analysis revealed same vital signaling pathways in DUX4
subtype (Additional file 2: Figure S3a-b, Additional file 3:
Table S2), whereas in Ph-like subtype, we identified add-
itional signaling pathways, including P53 and
mitogen-activated protein kinase (MAPK) pathways
(Additional file 2: Figure S3c, Additional file 3: Table
S2). The strongly co-expressed cis PC genes with DE
lncRNAs (n = 32) include oncogenes such as IL2RA [43],
TGFB2 [44], and CDK6 [45] activated in signaling path-
ways from DUX4 and Ph-like subgroups (Add-
itional file 2: Figure S4a-d, Table 3).
However, there were no significant pathways identified

within NH-HeH subtype. We next related the functions
of DUX4 and Ph-like-specific DE lncRNAs obtained
from cis-based analysis to those functions identified with
DE PC genes. We observed an overlap of 100% (n = 18,
Additional file 3: Table S2) of pathways from the DUX4
subtype between lncRNA-based and PC-based func-
tional enrichment analysis (Fig. 2b). In the Ph-like sub-
type, we identified 60% (9 out of 15) equal pathways
between DE PC-based and DE lncRNA-based functional
enrichment analysis (Additional file 3: Table S2 and
Fig. 2d). However, we identified Ph-like-specific
lncRNAs to be strongly correlated with genes involved
in key signaling pathways than Ph-like-specific protein-
coding genes. For example, we identified mTOR and
PI3K-AKT exclusively in the Ph-like-specific lncRNA-
based pathway analysis. Together, our analyses highlight
important functions of BCP-ALL subtype-specific
lncRNAs whose expression correlates tightly with that of
cancer-related oncogenes.

Table 2 Number of BCP-ALL subtype-specific lncRNAs co-expressed with its cis and trans PC genes

Subtype Cis PC genes
(n = 929)

lncRNAs co-expressed with cis PC genes
(n = 621)

Trans PC genes
(n = 753)

lncRNAs co-expressed with trans PC genes
(n = 552)

DUX4 669 451 (736) 492 379 (736)

Ph-like 260 170 (383) 261 173 (383)

The table represents the number of significantly (Pearson correlation coefficient ≥ 0.55, two-tailed P value ≤ 0.05) co-expressed subtype-specific lncRNAs with their
cis and trans protein-coding genes. The numbers shown within the bracket are the total number of subtype-specific lncRNAs. Cis PC genes, the protein-coding
genes located within the cis (≤ 100 kb proximity) region of the subtype-specific lncRNAs; Trans PC genes, the protein-coding genes located within the trans region
(≥ 100 kb) of subtype-specific lncRNAs
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Relapse-specific lncRNAs driving BCP-ALL progression
To gain insights into the possible role of lncRNAs
driving BCP-ALL progression, we investigated dysreg-
ulation of lncRNAs at relapse. For each molecular
BCP-ALL subtype, we performed a differential expres-
sion analysis of lncRNAs between ID and REL sam-
ples (Fig. 3). Nine hundred forty-seven lncRNAs
(Additional file 4: Table S3) emerged as significantly
DE (absolute fold change ≥ ± 1.5; P value ≤ 0.01) be-
tween ID and REL from the three subtypes. Around
20% (n = 186) of those DE lncRNAs were upregu-
lated, and 80% were downregulated at relapse. The
hierarchical clustering on relapse-specific lncRNAs
within each subtype (DUX4, Ph-like, NH-HeH) identi-
fied clear separation between ID and REL (Fig. 3a–c).
While majority of relapse-specific lncRNAs are novel,
we identified a few previously reported onco-lncRNAs
(Table 4) within our set.
The putative molecular functions of relapse-specific

lncRNAs were identified using the previously described
guilt-by-association approach. Relapse-specific lncRNAs
within Ph-like and NH-HeH subtypes did not reveal any

significant correlation with activation of pathways. In
contrast, in the DUX4 subtype, we identified 56% (n =
321) relapse-specific lncRNAs correlated with cis PC
genes (Additional file 4: Table S3). These DUX4
relapse-specific lncRNAs showed correlation with the
PC genes involved in vital signaling pathways and meta-
bolic pathways, including NF-kappa B-signaling pathway,
cell adhesion molecule (CAMS) and metabolic pathways
(number of genes involved ≥ 3 and P value ≤ 0.05)
(Fig. 3d, Additional file 4: Table S3). These results indi-
cate that relapse-specific markers from DUX4 subtype
may be functionally engaged in metabolic and signaling
pathways.

Subtype-specific BCP-ALL lncRNAs show epigenetic
alterations
For the analysis of the methylation status of loci located
at the lncRNAs genomic position in the BCP-ALL sub-
types, we used DNA methylation array data (collected
from Illumina 450k methylation array) from the same
patients (n = 45) including matched ID and REL samples
(n = 82). The distribution of DNA methylation levels of

Fig. 2 The molecular pathways of lncRNAs involved in the DUX4 and Ph-like BCP-ALL subgroups. a The barplot plot depicts the molecular
pathway analysis from the functional enrichment analysis for nearby (≤ 100 kb proximity) cis protein-coding genes correlated (Pearson correlation
coefficient≥ 0.55 and two-tailed P value ≤ 0.05) with DE lncRNAs in the DUX4 subtype. b The heatmap depicts the concordance between the
protein-coding and lncRNA-based predictions for DUX4 subtypes. c The barplot depicts the molecular pathway analysis from the functional
enrichment analysis for nearby (≤ 100 kb proximity) cis protein-coding genes correlated (Pearson correlation coefficient ≥ 0.55 and two-tailed P
value ≤ 0.05) with DE lncRNAs in the Ph-like subtype. d The heatmap depicts the overlapping pathways from both lncRNAs and protein-coding
in the Ph-like subtype. The KEGG pathways or biological functions presented in the heatmaps and barplots show with P value ≤ 0.05 and > 2
genes involved in each pathways. The hypergeometric P values are obtained from GeneSCF for the pathways. CAMs cell adhesion molecules,
CML chronic myeloid leukemia, AML acute myeloid leukemia
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CpG sites (n = 60,021, Additional file 5: Table S4) associ-
ated with 7160 lncRNAs was compared with CpG sites
associated with PC genes across all BCP-ALL samples.
Unlike the expression levels, the distribution of DNA
methylation (hypo-methylation or hyper-methylation)
between lncRNAs and PC genes was similar (Add-
itional file 2: Figure S1b). Given the robust separation of
BCP-ALL subtypes on DNA methylation profile of CpGs
associated with lncRNAs on the PCA analysis (Fig. 4a),
we next studied the differential hypo-methylated (methy-
lation difference value < 0; P value ≤ 0.05) and
hyper-methylated (methylation difference value > 0.2; P
value ≤ 0.05) CpGs associated with lncRNAs in each

subtype (see the “Method” section). The hierarchical
clustering of differentially methylated (DM) lncRNAs
showed distinct methylation patterns for each subtype,
concordant with the DE lncRNA signature (Fig. 4b–d,
Additional file 5: Table S4). In the DUX4 and NH-HeH
subtypes, the number of hypo-methylated lncRNAs (dif-
ferential methylation value < 0, P value ≤ 0.05) was
higher compared to the number of hyper-methylated
lncRNAs. We classified the DM lncRNAs based on their
genomic regions as gene body methylated and
promoter-TSS methylated. In the promoter methylated
lncRNAs, we identified the same trend with high degree
of hypo-methylated and lower number hyper-methylated

Table 3 Subtype-specific lncRNAs and oncogenes

Subtype-specific lncRNAs Pearson correlation coefficient P value Oncogene

RP11-347C18.3 0.56 3.25E−008 CDK6

RP11-461F16.3 0.62 5.21E−010

RP11-96H19.1 0.62 3.89E−010

RP11-228B15.4 0.64 7.68E−011

MME-AS1 0.56 3.68E−008

CTB-39G8.3 0.57 1.78E−008

AC002454.1 0.72 2.21E−014

RP11-582 J16.4 0.55 8.08E−008

AC009970.1 0.64 6.23E−011

RP11-229P13.20 0.66 1.44E−011

LINC00114 0.57 3.06E−008

CTB-118N6.3 0.61 9.70E−010

SOCS2-AS1 0.62 4.94E−010

CTD-2561B21.10 0.61 9.91E−010

RP11-413E1.4 0.56 4.36E−008

KB-1460A1.1 0.55 7.77E−008

AC012309.5 0.59 4.10E−009

RP11-37B2.1 0.59 4.76E−009

ASB16-AS1 0.65 3.86E−011

LINC00426 0.62 6.32E−010

LINC01071 0.57 2.46E−008

RP11-536K7.5 0.74 5.11E−15 IL2RA

RP11-224O19.2 0.98 1.08E−061 TGFB2

AC004837.5 0.83 6.11E−023

RP11-251M1.1 0.79 7.39E−019

CTD-2571L23.8 0.75 2.94E−016

RP11-35O15.1 0.65 3.36E−011

AC139100.3 0.58 1.00E−008

RP11-158M2.3 0.58 1.50E−008

RP11-672A2.5 0.56 4.68E−008

CTD-2357A8.3 0.55 7.46E−008

RP11-677M14.3 0.55 6.68E−008

Positively correlating novel cis subtype-specific lncRNAs with oncogenes, CDK6, TGFB2, and IL2RA from Ph-like and DUX4 subtypes
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Fig. 3 Relapse-specific DE lncRNAs from BCP-ALL subtypes. a–c Heatmap depicting the hierarchical clustering on relapse-specific DE lncRNA
signature on z-score transformed LIMMA normalized expression values from DUX4, Ph-like, and NH-HeH subtypes. Each heatmap shows the
up- and downregulated lncRNAs specific to ID and REL samples. d Molecular pathway analysis with the number of genes involved in each
pathway from the enrichment analysis of the nearby (< 100 kb proximity) cis protein-coding genes correlated (Pearson correlation > 0.55 and
P value ≤ 0.05) with relapse-specific DE lncRNAs in the DUX4 subtype. The legend box indicates the number of ID and REL samples within each
group. Abbr.: CAMs; cell adhesion molecules

Table 4 Previously reported lncRNAs identified as relapse-specific lncRNAs in BCP-ALL subtypes

Relapse-specific lncRNAs Disease association

TCL6 (DUX4) Chromosomal translocation T cell leukemia/lymphoma [49]

LINC00312 (DUX4, Ph-like, NH-HeH) Proliferation, invasion, and migration of thyroid cancer, nasopharyngeal carcinoma [50]

miR-17-92a-1 (DUX4, Ph-like, NH-HeH) Development, progression, and aggressiveness of colorectal cancer [51]

The differentially expressed lncRNAs between relapse (REL) and initial diagnosis (ID), from three subtypes, which were previously, reported for its disease
association, selected representative examples from relapse-specific lncRNAs, which were previously identified in other diseases
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lncRNAs in DUX4 and NH-HeH subtypes. However, the
Ph-like subtype has shown a higher degree of
hyper-methylated DM lncRNAs than hypo-methylated
DM lncRNAs. The list of subtype-specific DM lncRNAs
from the three subtypes contained previously defined
epigenetically altered lncRNAs from other cancer types,
for example, we observed the oncogenic lncRNAs
LINC00312 [46], PVT1, and TCL6 [47], which are differ-
entially methylated in at least one of the three subtypes.
Together, these data illustrate epigenetically altered list
of lncRNAs in three BCP-ALL subtypes.

Correlation between subtype-specific differentially
expressed and differentially methylated lncRNAs
In order to define whether the subtype-specific promoter
methylation impacts on the expression level, we com-
pared the promoter-TSS differential CpG methylated
lncRNAs (n = 227) with its differential expression signa-
ture. We observed 44 lncRNAs with differential methy-
lation pattern in their promoter region accompanied by
a differential expression pattern at RNA level. Out these,
23 lncRNAs harbored significant hypo-methylation and
hyper-methylation pattern (Pearson correlation,

Fig. 4 Hierarchical clustering of CGIDs associated with DM lncRNAs. a PCA of CpGs associated with lncRNAs on SWAN normalized β values on 82
BCP-ALL samples obtained from DNA methylation array. Each point represents a BCP-ALL sample. DUX4, Ph-like, NH-HeH, LH, and others are
represented by orange, rose, blue, green, and gray, respectively. b The heatmap representing hierarchal clustering on 544 differentially
methylated (DM) CGIDs associated with 434 lncRNAs in DUX4 subtype. In the DUX4 subtype, we identified 328 (76%) differentially hypo-
methylated and 106 (25%) hyper-methylated lncRNAs. c The heatmap representing hierarchal clustering on 518 DM CGIDs associated with 450
lncRNAs in the Ph-like subtype. In Ph-like subtype, we observed 302 (67%) hyper-methylated lncRNAs and 148 (33%) hypo-methylated lncRNAs. d
The heatmap representing hierarchal clustering on 295 DM CGIDs associated with 234 lncRNAs in NH-HeH subtype. In the NH-HeH subtype, we
identified 200 (86%) hypo-methylated and 34 (14%) hyper-methylated lncRNAs. The heatmap is plotted using SWAN normalized beta values. The
barplots below each heatmap represent the distribution of DM lncRNAs in the genome (promoter-TSS and gene body) lncRNAs from each
subtype. The distribution DM promoter-TSS lncRNAs are as follows: 25%, 29%, and 39% in DUX4, Ph-like, and NH-HeH subtype, respectively
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two-tailed P value ≤ 0.05) at the promoter region
(Table 5) across the three BCP-ALL subtypes.
Of these 23 putative epigenetically facilitated lncRNAs,

15 were related to the DUX4 subgroup (Fig. 5a) including
the novel lncRNAs R11-138M12.1 and RP11-624M8.1.
These were significantly hypo-methylated at their promoter
region and transcriptionally upregulated in the DUX4 sub-
group (Pearson correlation coefficient = − 0.69; P value =
5.1E−13 for R11-138M12.1; Pearson correlation coefficient
= − 0.50; P value = 1.36E−06 for RP11-624M8.1; Fig. 5b, c).
In the Ph-like subtype, we observed 7 lncRNAs with pro-
moter methylation (Fig. 5d); interestingly, the same lncRNA
R11-138M12.1 showed significant hyper-methylation at the
promoter region and a concordant downregulation in the
Ph-like subgroup (Fig. 5e). Besides these novel lncRNAs,
we identified lncRNAs previously reported in the context
of different cancers from our epigenetically altered results.
The lncRNAs PVT1 (Pearson correlation coefficient = −
0.40, two-tailed P value ≤ 0.001) and DIO3OS [48] (Pearson
correlation coefficient = − 0.31, two-tailed P value = 0.0037)
are examples, which we observed in the DUX4 and

NH-HeH subtype with significant anti-correlation (two--
tailed P value ≤ 0.01) to its expression level.
Around 46% (n = 512) of DM subtype-specific lncRNAs

were localized in the intronic and intergenic genomic re-
gions. We next aimed to investigate whether these
lncRNA regions have chromatin markers encoded within
their genomic location. A recent human genome-wide
chromatin marker study [49] has provided a rich resource
to identify chromatin markers. Genome-wide mapping
of B lymphocyte cell line by searching for epigenetic
markers within our DM subtype-specific intronic and
intergenic regions revealed a significant number of
lncRNAs (n = 53; Additional file 5: Table S4, Fisher
extract test P value = 2.2E−16) with enchancer and in-
sulator markers (Additional file 5: Table S4). Out of
these, lncRNAs, RP11-134O21.1, RP11-398B16.2,
RP11-689B22.2, CTC-458I2.2, and LINC00880 were
DE expressed, with a significant negative correlation
between DNA methylation and the expression levels
in the DUX4 subtype (Table 6). These findings suggest
that epigenetic silencing and activation of promoter

Table 5 The list of significantly correlated DNA methylation and the expression of the promoter methylated lncRNAs (n = 23) from
BCP-ALL subtypes
DM lncRNAs Pearson correlation coefficient P value Methylation Absolute fold change Subtypes

AC003075.4 − 0.31 0.004 1.43 − 1.26 DUX4

AC099754.1 − 0.32 0.002 − 1.74 3.2

AC104655.3 − 0.26 0.017 − 2.27 2.07

CACNA1C-AS1 − 0.45 2.03E−05 1.97 − 1.62

CTB-25B13.9 − 0.26 0.016 − 1.73 1.46

IGF2-AS − 0.24 0.028 − 1.33 4.95

LINC01006 − 0.39 0.001 − 2.06 2.53

PVT1 − 0.40 0.001 − 2.13 1.15

RGMB-AS1 − 0.26 0.0193 − 1.48 5.96

RP11-125B21.2 − 0.35 0.001 − 1.75 4.11

RP11-138M12.1 − 0.70 5.21E−13 − 5.98 3.77

RP11-367G6.3 − 0.30 0.004 1.98 − 1.63

RP11-624M8.1 − 0.50 1.34E−06 − 3.34 4.13

RP11-789C17.3 − 0.36 0.001 − 2.27 3.2

SERTAD4-AS1 − 0.25 0.0232 − 1.98 1.79

LINC01006 − 0.38 0.0003 1.44 − 1.56 Ph-like

RP11-138M12.1 − 0.70 5.21E−13 2.06 − 1.44

RP11-305F18.1 − 0.64 5.36E−11 1.76 − 2.08

AC099754.1 − 0.33 0.002 1.21 − 1.36

ACVR2B-AS1 − 0.36 0.0009 2.18 − 1.75

LINC00996 − 0.39 0.0003 − 1.56 2.11

ERICH1-AS1 − 0.40 0.0006 − 1.82 2.21

DIO3OS − 0.31 0.0037 − 1.76 4.05 NH-HeH

U3 − 0.83 1.346E-22 − 2.01 2.43

The lncRNAs are promoter differentially methylated and differentially expressed in their corresponding subtypes. DM, differentially methylated. The significance is
calculated based on Pearson correlation rate and two-tailed P value ≤ 0.05
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lncRNAs may be a mechanism that contributes to the dys-
regulation of expression of lncRNAs.

Discussion
Although previous studies have demonstrated the in-
volvement of lncRNAs in acute leukemias [21, 25], com-
prehensive characterization of the transcriptome,
epigenetic regulation and functional contribution of
lncRNAs in distinct BCP-ALL subtypes are lacking.
LncRNAs, as the novel class of functional molecules,
are involved in cancer biology and have previously
been reported in different molecular subtypes in

various cancers. However, their role in BCP-ALL sub-
types has not been investigated. Here, we unravel the
lncRNA landscape using transcriptome and methy-
lome data from 45 (adult and pediatric) relapsed
BCP-ALL patients focusing on the three molecular
subtypes namely DUX4, Ph-like, and NH-HeH.
Our integrated transcriptomic analyses using RNA-seq

and DNA methylation bring significant novel insights
and advances: they provide the most comprehensive
novel datasets so far for BCP-ALL subtypes. We provide
a resource of subtype-specific and relapse-specific
lncRNAs and potential lncRNA functions and uncover

Fig. 5 The epigenetically altered promoter methylated lncRNAs and their expression. a The promoter methylated lncRNAs with significant
negative correlation with DE expression profile from the DUX4 subtypes. b, c Two representative examples of hypo-methylated lncRNAs with
increased expression profile from DUX4 subtype. lncRNAs, RP11-138M12.1 (Pearson correlation coefficient = − 0.69, two-tailed P value = 5.21E−13),
RP11-624MB.1 (Pearson correlation coefficient = − 0.50, P value = 1.36E−06) are examples with hypo-methylation and upregulated expression
pattern with significant inverse correlation between DNA methylation and expression levels. d The promoter methylated lncRNAs with significant
negative correlation with DE expression profile from the Ph-like subtypes. e A representative example of the promoter hyper-methylated lncRNA,
RP11-138M12.1 (Pearson correlation coefficient = − 0.69, two-tailed P value = 5.21E−13) with downregulated expression pattern, and with inverse
correlation within the Ph-like subtype

Table 6 The list of significantly correlated DNA methylation and the expression of the intronic and intergenic methylated lncRNAs
(n = 5) from DUX4 BCP-ALL subtypes
DM lncRNAs Absolute fold change Methylation value Pearson correlation rate P value Epi-markers Biotype

RP11-134O21.1 2.54 − 1.56 − 0.63 1.9E−010 Enhancer Intron

RP11-398B16.2 2.08 − 1.85 − 0.47 0.0007 Insulator

RP11-689B22.2 1.52 − 3.37 − 0.47 0.008 Enhancer

CTC-458I2.2 − 1.16 3.38 − 0.42 0.0001 Enhancer

LINC00880 − 1.45 2.23 − 0.25 0.02 Enhancer Intergenic

The significance is calculated based on Pearson correlation rate and two-tailed P value ≤ 0.05. The lncRNAs are promoter differentially methylated and
differentially expressed in their corresponding subtypes. These lncRNAs are with enhancer and insulator epigenetic markers. DM, differentially methylated
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their epigenetic alterations within the BCP-ALL sub-
types. We identified 1235 DE subtype-specific lncRNAs
dysregulated in at least one of the three subtypes. These
1235 DE subtype-specific lncRNAs successfully stratified
subtypes in our discovery cohort, an independent valid-
ation cohort.
Another important aspect of our study is the identifi-

cation of relapse-specific dysregulated lncRNAs across
three BCP-ALL subtypes. A closer look into the
relapse-specific lncRNA signature identified lncRNAs
previously described as oncogenic including RP11-
701P16.5 [50], SLC38A3 [51], and LINC00312, which are
upregulated in relapsed samples within DUX4 subtype.
Importantly, apoptosis suppressor lncRNA in

Myc-driven lymphomas miR-17/92 cluster host gene
(MIR17HG) [52] is upregulated in relapsed samples
within the Ph-like subtype and downregulated in re-
lapsed samples within DUX4 and NH-HeH subtypes.
Overall, the relapse-specific lncRNAs highlight the onco-
genic relevance in BCP-ALL subtypes: near haploid or
high hyperdiploid (NH-HeH; n = 16) and low hypodip-
loid. Besides the oncogenic properties, lncRNAs can act
as prognostic markers [53, 54] and aid at disease diagno-
sis and treatment. A subset of our relapse-specific
lncRNAs (n = 61, Additional file 4: Table S3) overlaps
with the prognostic markers identified from 14
Pan-Cancer datasets [42], including lung cancer-
associated transcript 1 (LUCAT1), which is previously
reported for its drug resistance in solid cancer [55].
Within the DUX4 subtype, we identified the upregulated
expression of LUCAT1 at relapse, potentially providing a
novel insight into treatment resistance for BCP-ALL
subtypes. Together, this illustrates the catalog of relevant
lncRNAs in different subtypes of BCP-ALL as
subtype-specific and relapse-specific markers with the
potential of RNA-based approaches in the treatment of
BCP-ALL subtypes.
The dissection of the regulatory pathways mediated by

the molecular subtype-specific and relapse-specific
lncRNAs revealed the activation of pivotal signaling
pathways across three BCP-ALL subtypes. The func-
tional analysis by means of the guilt-by-association
approach highlights the subtype-specific and relapse-
specific lncRNAs associated with activation of signaling
pathways and metabolic pathways that are associated
with leukemogenesis including TGF-Beta, hippo, P53,
JAK-STAT, cytokine-cytokine receptor, endocytosis,
mTOR, and metabolic pathways. Characterization of the
lncRNAs involved in these pathways may potentially re-
veal novel targets in molecular therapies.
The functional insights of relapse-specific and

subtype-specific lncRNAs revealed biological relevance
to BCP-ALL subtypes including cell cycle functions, sig-
nal transduction, cell migration, and metabolic

processes. Some of the functions predicted here corrob-
orate previous studies emphasizing the strengths of the
employed guilt-by-association. For example, lncRNA
AC002454.1, which we associated to the PIK3-AKT
pathway in Ph-like subtype, was recently reported to
regulate cyclin-dependent kinase (CDK6) to participate
in cell cycle disorder [56]. The CDK6 gene appears to be
frequently dysregulated in hematopoietic malignancies
[45] and is hence attributed a critical role in tumorigen-
esis, also shown in ALL driven by mixed lineage
leukemia (MLL) fusion proteins [57]. In Ph-like subtype,
both CDK6 and AC002454.1 are correlated and upregu-
lated specifically in Ph-like samples, suggesting they
displayed enhancer-like functions. We identified 8
relapse-specific lncRNAs (Additional file 4: Table S3) as-
sociated with metabolic pathways in the DUX4 subtype
overlapping with lncRNAs [58] reported to synergistic-
ally dysregulate metabolic pathways in multiple tumor
contexts.
Besides known lncRNAs, we also identified novel

lncRNAs associated with activation of key signaling
pathways. For instance, in the DUX4 subtype, we identi-
fied a set of novel lncRNAs associated with TGF-beta
pathway, including the antisense RP11-224019.2, with a
significant positive correlation to the TGFB gene. Re-
cently, a number of lncRNAs were documented to be as-
sociated with TGFß signaling pathway, including MEG3
regulating the TGFB2 pathway in breast cancer [40].
However, lncRNAs associated with the TGFß pathway in
BCP-ALL subtypes have not been reported. The
co-expression of RP11-224019.2 and TGFB in DUX4
subtype may indicate their functional relatedness or
regulatory relationships. In addition to that, a notable
observation was a strong correlation between relapse-
specific lncRNAs with genes involved in the activation
of metabolic pathways in the DUX4 subtype. We identi-
fied 112 relapse-specific lncRNAs co-expressed with 29
(Additional file 4: Table S3) PC genes activated in meta-
bolic pathways, including previously reported 8 bio-
marker lncRNAs. For example, we identified oncogenic
lncRNA LUCAT1 reported to be associated with poor
prognosis in lung cancer [59]. However, the LUCAT1
has not yet been reported in the BCP-ALL context. The
global co-expression analysis and gene expression profil-
ing suggest important and previously unappreciated
roles of lncRNAs in the BCP-ALL subtypes. Our ana-
lyses provide important functions of subtype-specific
and relapse-specific lncRNA genes whose expression
correlates tightly with oncogenic coding genes.
Although we observed that subtype-specific lncRNAs

and subtype-specific protein-coding genes were pre-
dicted to activate or inhibit the same pathways, some
important exclusivity was observed. For instance, the
signaling pathways such as the PI3K and mTOR in
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Ph-like subtype was enriched only in the lncRNA-based
enrichment analysis, whereas these pathways did not
appear to be enriched/dysregulated in the mRNA-based
analysis. The PI3K and mTOR signaling pathways
control proliferation, differentiation, and survival of
hematopoietic cells [54]. Consistent with our results,
other studies indicated the potency of lncRNAs facili-
tating the cancer cell growth through mTOR and
PI3K signaling pathways [33, 44, 55], yet reports on
BCP-ALL subtypes have been lacking so far. Consid-
ering the functional nexus between Ph-like-specific
lncRNAs and the activation of pathways such as
mTOR and PI3K signaling pathways, targeting those
lncRNAs may be a promising novel therapeutic target
for BCP-ALL subtypes.
Our work also underscores the importance of epi-

genetic alterations in modulating lncRNA transcrip-
tional activities. Although previous studies [60–62]
have demonstrated cross-talk between DNA methyla-
tion and transcriptional activities of lncRNAs, their
role in the etiology of BCP-ALL subtypes has not
been investigated. DNA methylation analyses of
lncRNAs revealed that DNA methylation might
underlie the differential expression of BCP-ALL
subtype-specific lncRNAs. Some subtype-specific
lncRNAs identified here have been reported by previ-
ous studies. For example, SOX2-OT (67, [63]),
LINC00312 [46], TCL6, and PVT1 are onco-lncRNAs,
which are promoter methylated in one of the three
subtypes. The lncRNA, PVT1, was reported for its
MYC activity [64, 65] and as oncogenic lncRNA with
multiple roles in cell growth, dysfunction, and differ-
entiation in AML [66]. Both lncRNAs, LINC00312
and TCL6, have been extensively investigated on expres-
sion levels but not on the epigenetic level. The promoters
of both TCL6 and LINC00312 were observed to be
hyper-methylated with corresponding diminished expres-
sion in the DUX4 and NH-HeH samples. Notably, the
DNA methylation analysis of lncRNAs revealed that DNA
methylation might underlie the differential expression of
subtype-specific lncRNAs.

Conclusions
Overall, our study provides an in-depth analysis of the
lncRNA transcriptome and epigenome in BCP-ALL sub-
types and provides novel lncRNA markers associated
with subtype and relapse specificity and with epigen-
etic alterations in BCP-ALL subtypes. Additionally, we
also demonstrated these lncRNAs might contribute to
the regulation of key signaling pathways involved in
BCP-ALL. In summary, our study provides a compre
hensive set of dysregulated lncRNAs from BCP-ALL
subtypes derived using different integrative ap-
proaches. This subtype-specific lncRNAs and their

mechanisms of action in detail might provide promis-
ing avenues for future studies to investigate key bio-
markers and potential therapeutic targets in BCP-ALL
subtypes.
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