41 research outputs found

    Genome-wide association reveals host-specific genomic traits in Escherichia coli

    Get PDF
    Background Escherichia coli is an opportunistic pathogen which colonizes various host species. However, to what extent genetic lineages of E. coli are adapted or restricted to specific hosts and the genomic determinants of such adaptation or restriction is poorly understood. Results We randomly sampled E. coli isolates from four countries (Germany, UK, Spain, and Vietnam), obtained from five host species (human, pig, cattle, chicken, and wild boar) over 16 years, from both healthy and diseased hosts, to construct a collection of 1198 whole-genome sequenced E. coli isolates. We identified associations between specific E. coli lineages and the host from which they were isolated. A genome-wide association study (GWAS) identified several E. coli genes that were associated with human, cattle, or chicken hosts, whereas no genes associated with the pig host could be found. In silico characterization of nine contiguous genes (collectively designated as nan-9) associated with the human host indicated that these genes are involved in the metabolism of sialic acids (Sia). In contrast, the previously described sialic acid regulon known as sialoregulon (i.e. nanRATEK-yhcH, nanXY, and nanCMS) was not associated with any host species. In vitro growth experiments with a Δnan-9 E. coli mutant strain, using the sialic acids 5-N-acetylneuraminic acid (Neu5Ac) and N-glycolylneuraminic acid (Neu5Gc) as sole carbon source, showed impaired growth behaviour compared to the wild-type. Conclusions This study provides an extensive analysis of genetic determinants which may contribute to host specificity in E. coli. Our findings should inform risk analysis and epidemiological monitoring of (antimicrobial resistant) E. coli

    Genome-wide association reveals host-specific genomic traits in Escherichia coli

    Get PDF
    BACKGROUND: Escherichia coli is an opportunistic pathogen which colonizes various host species. However, to what extent genetic lineages of E. coli are adapted or restricted to specific hosts and the genomic determinants of such adaptation or restriction is poorly understood. RESULTS: We randomly sampled E. coli isolates from four countries (Germany, UK, Spain, and Vietnam), obtained from five host species (human, pig, cattle, chicken, and wild boar) over 16 years, from both healthy and diseased hosts, to construct a collection of 1198 whole-genome sequenced E. coli isolates. We identified associations between specific E. coli lineages and the host from which they were isolated. A genome-wide association study (GWAS) identified several E. coli genes that were associated with human, cattle, or chicken hosts, whereas no genes associated with the pig host could be found. In silico characterization of nine contiguous genes (collectively designated as nan-9) associated with the human host indicated that these genes are involved in the metabolism of sialic acids (Sia). In contrast, the previously described sialic acid regulon known as sialoregulon (i.e. nanRATEK-yhcH, nanXY, and nanCMS) was not associated with any host species. In vitro growth experiments with a Δnan-9 E. coli mutant strain, using the sialic acids 5-N-acetylneuraminic acid (Neu5Ac) and N-glycolylneuraminic acid (Neu5Gc) as sole carbon source, showed impaired growth behaviour compared to the wild-type. CONCLUSIONS: This study provides an extensive analysis of genetic determinants which may contribute to host specificity in E. coli. Our findings should inform risk analysis and epidemiological monitoring of (antimicrobial resistant) E. coli

    Why Are Outcomes Different for Registry Patients Enrolled Prospectively and Retrospectively? Insights from the Global Anticoagulant Registry in the FIELD-Atrial Fibrillation (GARFIELD-AF).

    Get PDF
    Background: Retrospective and prospective observational studies are designed to reflect real-world evidence on clinical practice, but can yield conflicting results. The GARFIELD-AF Registry includes both methods of enrolment and allows analysis of differences in patient characteristics and outcomes that may result. Methods and Results: Patients with atrial fibrillation (AF) and ≄1 risk factor for stroke at diagnosis of AF were recruited either retrospectively (n = 5069) or prospectively (n = 5501) from 19 countries and then followed prospectively. The retrospectively enrolled cohort comprised patients with established AF (for a least 6, and up to 24 months before enrolment), who were identified retrospectively (and baseline and partial follow-up data were collected from the emedical records) and then followed prospectively between 0-18 months (such that the total time of follow-up was 24 months; data collection Dec-2009 and Oct-2010). In the prospectively enrolled cohort, patients with newly diagnosed AF (≀6 weeks after diagnosis) were recruited between Mar-2010 and Oct-2011 and were followed for 24 months after enrolment. Differences between the cohorts were observed in clinical characteristics, including type of AF, stroke prevention strategies, and event rates. More patients in the retrospectively identified cohort received vitamin K antagonists (62.1% vs. 53.2%) and fewer received non-vitamin K oral anticoagulants (1.8% vs . 4.2%). All-cause mortality rates per 100 person-years during the prospective follow-up (starting the first study visit up to 1 year) were significantly lower in the retrospective than prospectively identified cohort (3.04 [95% CI 2.51 to 3.67] vs . 4.05 [95% CI 3.53 to 4.63]; p = 0.016). Conclusions: Interpretations of data from registries that aim to evaluate the characteristics and outcomes of patients with AF must take account of differences in registry design and the impact of recall bias and survivorship bias that is incurred with retrospective enrolment. Clinical Trial Registration: - URL: http://www.clinicaltrials.gov . Unique identifier for GARFIELD-AF (NCT01090362)

    Risk profiles and one-year outcomes of patients with newly diagnosed atrial fibrillation in India: Insights from the GARFIELD-AF Registry.

    Get PDF
    BACKGROUND: The Global Anticoagulant Registry in the FIELD-Atrial Fibrillation (GARFIELD-AF) is an ongoing prospective noninterventional registry, which is providing important information on the baseline characteristics, treatment patterns, and 1-year outcomes in patients with newly diagnosed non-valvular atrial fibrillation (NVAF). This report describes data from Indian patients recruited in this registry. METHODS AND RESULTS: A total of 52,014 patients with newly diagnosed AF were enrolled globally; of these, 1388 patients were recruited from 26 sites within India (2012-2016). In India, the mean age was 65.8 years at diagnosis of NVAF. Hypertension was the most prevalent risk factor for AF, present in 68.5% of patients from India and in 76.3% of patients globally (P < 0.001). Diabetes and coronary artery disease (CAD) were prevalent in 36.2% and 28.1% of patients as compared with global prevalence of 22.2% and 21.6%, respectively (P < 0.001 for both). Antiplatelet therapy was the most common antithrombotic treatment in India. With increasing stroke risk, however, patients were more likely to receive oral anticoagulant therapy [mainly vitamin K antagonist (VKA)], but average international normalized ratio (INR) was lower among Indian patients [median INR value 1.6 (interquartile range {IQR}: 1.3-2.3) versus 2.3 (IQR 1.8-2.8) (P < 0.001)]. Compared with other countries, patients from India had markedly higher rates of all-cause mortality [7.68 per 100 person-years (95% confidence interval 6.32-9.35) vs 4.34 (4.16-4.53), P < 0.0001], while rates of stroke/systemic embolism and major bleeding were lower after 1 year of follow-up. CONCLUSION: Compared to previously published registries from India, the GARFIELD-AF registry describes clinical profiles and outcomes in Indian patients with AF of a different etiology. The registry data show that compared to the rest of the world, Indian AF patients are younger in age and have more diabetes and CAD. Patients with a higher stroke risk are more likely to receive anticoagulation therapy with VKA but are underdosed compared with the global average in the GARFIELD-AF. CLINICAL TRIAL REGISTRATION-URL: http://www.clinicaltrials.gov. Unique identifier: NCT01090362

    Identification of Streptococcus suis putative zoonotic virulence factors: A systematic review and genomic meta-analysis

    No full text
    Streptococcus suis is an emerging zoonotic pathogen. Over 100 putative virulence factors have been described, but it is unclear to what extent these virulence factors could contribute to zoonotic potential of S. suis. We identified all S. suis virulence factors studied in experimental models of human origin in a systematic review and assessed their contribution to zoonotic potential in a subsequent genomic meta-analysis. PubMed and Scopus were searched for English-language articles that studied S. suis virulence published until 31 March 2021. Articles that analyzed a virulence factor by knockout mutation, purified protein, and/or recombinant protein in a model of human origin, were included. Data on virulence factor, strain characteristics, used human models and experimental outcomes were extracted. All publicly available S. suis genomes with available metadata on host, disease status and country of origin, were included in a genomic meta-analysis. We calculated the ratio of the prevalence of each virulence factor in human and pig isolates. We included 130 articles and 1703 S. suis genomes in the analysis. We identified 53 putative virulence factors that were encoded by genes which are part of the S. suis core genome and 26 factors that were at least twice as prevalent in human isolates as in pig isolates. Hhly3 and NisK/R were particularly enriched in human isolates, after stratification by genetic lineage and country of isolation. This systematic review and genomic meta-analysis have identified virulence factors that are likely to contribute to the zoonotic potential of S. suis

    Five complete genome sequences spanning the dutch streptococcus suis Serotype 2 and Serotype 9 populations

    No full text
    The zoonotic pathogen Streptococcus suis can cause septicemia and meningitis in humans. We report five complete genomes of Streptococcus suis serotype 2 and serotype 9, covering the complete phylogeny of serotype 9 Dutch porcine isolates and zoonotic isolates. The isolates include the model strain S10 and the Dutch emerging zoonotic lineage

    Erratum: Five Complete Genome Sequences Spanning the Dutch Streptococcus suis Serotype 2 and Serotype 9 Populations (Microbiology Resource Announcements (2022) 9:6 (e01439-19) DOI: 10.1128/MRA.01439-19)

    No full text
    Volume 9, no. 6, e01439-19, 2020, https://doi.org/10.1128/MRA.01439-19. Page 1, line 7: “CC20” should read “CC220.” Page 2, Table 1, line 3, column 4: “20” should read “220.” Page 2, Table 1, line 5, column 2: “Diseased pig” should read “Healthy pig.”

    Quantifying the contribution of four resistance mechanisms to ciprofloxacin MIC in Escherichia coli: a systematic review

    No full text
    Background: Reviews assessing the genetic basis of ciprofloxacin resistance in Escherichia coli have mostly been qualitative. However, to predict resistance phenotypes based on genotypic characteristics, it is essential to quan- tify the contribution of genotypic determinants to resistance. Objectives: We performed a systematic review to assess the relative contribution of known genomic resistance determinants to the MIC of ciprofloxacin in E. coli. Methods: PubMed and Web of Science were searched for English language studies that assessed ciprofloxacin MIC and presence or introduction of genetic determinants of ciprofloxacin resistance in E. coli. We included ex- perimental and observational studies without time restrictions. Medians and ranges of MIC fold changes were calculated for individual resistance determinants and combinations thereof. Results: We included 66 studies, describing 604 E. coli isolates that carried at least one genetic ciprofloxacin re- sistance determinant. Mutations in gyrA and parC, genes encoding targets of ciprofloxacin, contribute to the larg- est fold changes in ciprofloxacin resistance in E. coli compared with the WT. Efflux and physical blocking or enzymatic modifications confer smaller increases in ciprofloxacin MIC than mutations in gyrA and parC. However, the presence of these other resistance mechanisms in addition to target alteration mutations further increases ciprofloxacin MIC, thus resulting in ciprofloxacin MIC increases ranging from 250- to 4000-fold. Conclusions: This quantitative review of genomic determinants of ciprofloxacin resistance in E. coli demon- strates the complexity of resistance phenotype prediction from genomic data and serves as a reference point for studies aiming to predict ciprofloxacin MIC from E. coli genomes
    corecore