30 research outputs found

    Penetration of topically administered dexamethasone disodium phosphate and prednisolone acetate into the normal equine ocular fluids

    Get PDF
    Background: Topical dexamethasone and prednisolone are currently the mainstay treatment for equine ophthalmic inflammatory diseases, such as equine recurrent uveitis. Comparative pharmacokinetic studies in horses are lacking and current guidelines are mainly based on empirical data and extrapolation from other species. Objectives: To investigate the penetration and local concentrations of topically applied dexamethasone and prednisolone in normal equine ocular fluids and serum. Study design: Prospective randomised experimental pharmacokinetic study. Methods: Twenty-one Shetland ponies without ophthalmic disease were treated bilaterally topically every 2 hours during 24 hours to obtain steady state drug concentrations. One eye was treated with 0.15 mg of dexamethasone disodium phosphate (0.1%), and the other eye was simultaneously treated with 1.5 mg of prednisolone acetate (1%). Serum samples were taken prior to the induction of general anaesthesia. Aqueous and vitreous humour samples were taken during euthanasia at time points after administration of the last dose (t = 5 min, t = 15 min, t = 30 min, t = 60 min, t = 90 min, t = 120 min, t = 180 min). Each pony was randomly assigned to one time point, and three ponies were sampled per time point. Dexamethasone and prednisolone concentrations were measured by liquid chromatography-mass spectrometry. Results: The mean dexamethasone concentration in aqueous humour was 32.4 ng/mL (standard deviation [SD] 10.9) and the mean prednisolone concentration was 321.6 ng/mL (SD 96.0). In the vitreous and in serum samples concentrations of both corticosteroids were below the limit of detection (LOD 2.5 ng/mL). Main limitations: The study group was limited to subjects without evidence of current ophthalmic disease. A limited number of time points were measured. Conclusions: Potentially effective dexamethasone and prednisolone concentrations were measured in the anterior chamber, but vitreal concentrations were negligible. Systemic uptake was low. Therefore, treatment with only topically administered corticosteroids is deemed insufficient in horses in cases of posterior uveitis. Further studies evaluating other routes of administration are warranted

    Genes in the Ureteric Budding Pathway: Association Study on Vesico-Ureteral Reflux Patients

    Get PDF
    Vesico-ureteral reflux (VUR) is the retrograde passage of urine from the bladder to the urinary tract and causes 8.5% of end-stage renal disease in children. It is a complex genetic developmental disorder, in which ectopic embryonal ureteric budding is implicated in the pathogenesis. VUR is part of the spectrum of Congenital Anomalies of the Kidney and Urinary Tract (CAKUT). We performed an extensive association study for primary VUR using a two-stage, case-control design, investigating 44 candidate genes in the ureteric budding pathway in 409 Dutch VUR patients. The 44 genes were selected from the literature and a set of 567 single nucleotide polymorphisms (SNPs) capturing their genetic variation was genotyped in 207 cases and 554 controls. The 14 SNPs with p<0.005 were included in a follow-up study in 202 cases and 892 controls. Of the total cohort, ∌50% showed a clear-cut primary VUR phenotype and ∌25% had both a duplex collecting system and VUR. We also looked for association in these two extreme phenotype groups. None of the SNPs reached a significant p-value. Common genetic variants in four genes (GREM1, EYA1, ROBO2 and UPK3A) show a trend towards association with the development of primary VUR (GREM1, EYA1, ROBO2) or duplex collecting system (EYA1 and UPK3A). SNPs in three genes (TGFB1, GNB3 and VEGFA) have been shown to be associated with VUR in other populations. Only the result of rs1800469 in TGFB1 hinted at association in our study. This is the first extensive study of common variants in the genes of the ureteric budding pathway and the genetic susceptibility to primary VUR

    Depression and anxiety, an Indicated Prevention (DIP) protocol in homes for the elderly: feasibility and (cost) effectiveness of a stepped care programme

    Get PDF
    BACKGROUND: Depressive and anxiety disorders are a very common, serious and underdetected problem in homes for the elderly. Elderly persons in residential homes are at high risk for developing major depressive and anxiety disorders, and, therefore, deserve attention with regard to prevention. METHODS/DESIGN: This protocol describes a randomised trial on the feasibility and (cost) effectiveness of a stepped-care programme for prevention of depressive and anxiety disorders in homes for the elderly. The main outcome measure is the incidence of depressive and anxiety disorder in one year with a two years follow up. Secondary outcomes are symptoms of depression and anxiety, quality of life, direct health care costs and satisfaction with treatment. DISCUSSION: The number of studies examining the effects of preventive interventions on the incidence of mental disorders in the elderly population is very small. However, indicated prevention by means of a stepped-care programme seems to be an important option for decreasing the burden of illness for residents and their caregivers. This study contributes to the body of knowledge in this field. Positive effects may contribute to further use and development of tailored, (cost-) effective and easy to use interventions in a preventive stepped-care programme. TRIAL REGISTRATION: The Dutch Cochrane Centre, ISRCTN2754073

    Dutch juvenile idiopathic arthritis patients, carers and clinicians create a research agenda together following the James Lind Alliance method: A study protocol

    Get PDF
    Background: Research on Juvenile Idiopathic Arthritis (JIA) should support patients, caregivers/parents (carers) and clinicians to make important decisions in the consulting room and eventually to improve the lives of patients with JIA. Thus far these end-users of JIA-research have rarely been involved in the prioritisation of future research. Main body: Dutch organisations of patients, carers and clinicians will collaboratively develop a research agenda for JIA, following the James Lind Alliance (JLA) methodology. In a 'Priority Setting Partnership' (PSP), they will gradually establish a top 10 list of the most important unanswered research questions for JIA. In this process the input from clinicians, patients and their carers will be equally valued. Additionally, focus groups will be organised to involve young people with JIA. The involvement of all contributors will be monitored and evaluated. In this manner, the project will contribute to the growing body of literature on how to involve young people in agenda setting in a meaningful way. Conclusion: A JIA research agenda established through the JLA method and thus co-created by patients, carers and clinicians will inform researchers and research funders about the most important research questions for JIA. This will lead to research that really matters

    Identification of 12 new susceptibility loci for different histotypes of epithelial ovarian cancer.

    Get PDF
    To identify common alleles associated with different histotypes of epithelial ovarian cancer (EOC), we pooled data from multiple genome-wide genotyping projects totaling 25,509 EOC cases and 40,941 controls. We identified nine new susceptibility loci for different EOC histotypes: six for serous EOC histotypes (3q28, 4q32.3, 8q21.11, 10q24.33, 18q11.2 and 22q12.1), two for mucinous EOC (3q22.3 and 9q31.1) and one for endometrioid EOC (5q12.3). We then performed meta-analysis on the results for high-grade serous ovarian cancer with the results from analysis of 31,448 BRCA1 and BRCA2 mutation carriers, including 3,887 mutation carriers with EOC. This identified three additional susceptibility loci at 2q13, 8q24.1 and 12q24.31. Integrated analyses of genes and regulatory biofeatures at each locus predicted candidate susceptibility genes, including OBFC1, a new candidate susceptibility gene for low-grade and borderline serous EOC

    Identification and characterization of novel associations in the CASP8/ALS2CR12 region on chromosome 2 with breast cancer risk.

    Get PDF
    Previous studies have suggested that polymorphisms in CASP8 on chromosome 2 are associated with breast cancer risk. To clarify the role of CASP8 in breast cancer susceptibility, we carried out dense genotyping of this region in the Breast Cancer Association Consortium (BCAC). Single-nucleotide polymorphisms (SNPs) spanning a 1 Mb region around CASP8 were genotyped in 46 450 breast cancer cases and 42 600 controls of European origin from 41 studies participating in the BCAC as part of a custom genotyping array experiment (iCOGS). Missing genotypes and SNPs were imputed and, after quality exclusions, 501 typed and 1232 imputed SNPs were included in logistic regression models adjusting for study and ancestry principal components. The SNPs retained in the final model were investigated further in data from nine genome-wide association studies (GWAS) comprising in total 10 052 case and 12 575 control subjects. The most significant association signal observed in European subjects was for the imputed intronic SNP rs1830298 in ALS2CR12 (telomeric to CASP8), with per allele odds ratio and 95% confidence interval [OR (95% confidence interval, CI)] for the minor allele of 1.05 (1.03-1.07), P = 1 × 10(-5). Three additional independent signals from intronic SNPs were identified, in CASP8 (rs36043647), ALS2CR11 (rs59278883) and CFLAR (rs7558475). The association with rs1830298 was replicated in the imputed results from the combined GWAS (P = 3 × 10(-6)), yielding a combined OR (95% CI) of 1.06 (1.04-1.08), P = 1 × 10(-9). Analyses of gene expression associations in peripheral blood and normal breast tissue indicate that CASP8 might be the target gene, suggesting a mechanism involving apoptosis.Part of this work was supported by the European CommunityÂŽs Seventh Framework Programme under grant agreement number 223175 (grant number HEALTH-F2-2009-223175) (COGS). Funding for the iCOGS infrastructure came from: the European Community's Seventh Framework Programme under grant agreement n° 223175 (HEALTH-F2-2009-223175) (COGS), Cancer Research UK (C1287/A10118, C1287/A 10710, C12292/A11174, C1281/A12014, C5047/A8384, C5047/A15007, C5047/A10692), the National Institutes of Health (CA128978) and Post-Cancer GWAS initiative (1U19 CA148537, 1U19 CA148065 and 1U19 CA148112 - the GAME-ON initiative), the Department of Defence (W81XWH-10-1-0341), the Canadian Institutes of Health Research (CIHR) for the CIHR Team in Familial Risks of Breast Cancer, Komen Foundation for the Cure, the Breast Cancer Research Foundation, and the Ovarian Cancer Research Fund. The ABCFS, NC-BCFR and OFBCR work was supported by the United States National Cancer Institute, National Institutes of Health (NIH) under RFA-CA-06-503 and through cooperative agreements with members of the Breast Cancer Family Registry (BCFR) and Principal Investigators, including Cancer Care Ontario (U01 CA69467), Northern California Cancer Center (U01 CA69417), University of Melbourne (U01 CA69638). Samples from the NC-BCFR were processed and distributed by the Coriell Institute for Medical Research. The content of this manuscript does not necessarily reflect the views or policies of the National Cancer Institute or any of the collaborating centers in the BCFR, nor does mention of trade names, commercial products, or organizations imply endorsement by the US Government or the BCFR. The ABCFS was also supported by the National Health and Medical Research Council of Australia, the New South Wales Cancer Council, the Victorian Health Promotion Foundation (Australia) and the Victorian Breast Cancer Research Consortium. J.L.H. is a National Health and Medical Research Council (NHMRC) Australia Fellow and a Victorian Breast Cancer Research Consortium Group Leader. M.C.S. is a NHMRC Senior Research Fellow and a Victorian Breast Cancer Research Consortium Group Leader. The ABCS was supported by the Dutch Cancer Society [grants NKI 2007-3839; 2009 4363]; BBMRI-NL, which is a Research Infrastructure financed by the Dutch government (NWO 184.021.007); and the Dutch National Genomics Initiative. The ACP study is funded by the Breast Cancer Research Trust, UK. The work of the BBCC was partly funded by ELAN-Fond of the University Hospital of Erlangen. The BBCS is funded by Cancer Research UK and Breakthrough Breast Cancer and acknowledges NHS funding to the NIHR Biomedical Research Centre, and the National Cancer Research Network (NCRN). The BBCS GWAS received funding from The Institut National de Cancer. ES is supported by NIHR Comprehensive Biomedical Research Centre, Guy's & St. Thomas' NHS Foundation Trust in partnership with King's College London, United Kingdom. IT is supported by the Oxford Biomedical Research Centre. The BSUCH study was supported by the Dietmar-Hopp Foundation, the Helmholtz Society and the German Cancer Research Center (DKFZ). The CECILE study was funded by Fondation de France, Institut National du Cancer (INCa), Ligue Nationale contre le Cancer, Ligue contre le Cancer Grand Ouest, Agence Nationale de SĂ©curitĂ© Sanitaire (ANSES), Agence Nationale de la Recherche (ANR). The was supported by the Chief Physician Johan Boserup and Lise Boserup Fund, the Danish Medical Research Council and Herlev Hospital. The CNIO-BCS was supported by the Genome Spain Foundation, the Red TemĂĄtica de InvestigaciĂłn Cooperativa en CĂĄncer and grants from the AsociaciĂłn Española Contra el CĂĄncer and the Fondo de InvestigaciĂłn Sanitario (PI11/00923 and PI081120). The Human Genotyping-CEGEN Unit (CNIO) is supported by the Instituto de Salud Carlos III. The CTS was supported by the California Breast Cancer Act of 1993; National Institutes of Health (grants R01 CA77398 and the Lon V Smith Foundation [LVS39420].); the California Breast Cancer Research Fund (contract 97-10500). Collection of cancer incidence data used in this study was supported by the California Department of Public Health as part of the statewide cancer reporting program mandated by California Health and Safety Code Section 103885. The ESTHER study was supported by a grant from the Baden WĂŒrttemberg Ministry of Science, Research and Arts. Additional cases were recruited in the context of the VERDI study, which was supported by a grant from the German Cancer Aid (Deutsche Krebshilfe). The GC-HBOC was supported by Deutsche Krebshilfe (107 352). The GENICA was funded by the Federal Ministry of Education and Research (BMBF) Germany grants 01KW9975/5, 01KW9976/8, 01KW9977/0 and 01KW0114, the Robert Bosch Foundation, Stuttgart, Deutsches Krebsforschungszentrum (DKFZ), Heidelberg, Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr University Bochum (IPA), Bochum, Germany, as well as the Department of Internal Medicine, Evangelische Kliniken Bonn gGmbH, Johanniter Krankenhaus, Bonn, Germany. The HEBCS was financially supported by the Helsinki University Central Hospital Research Fund, Academy of Finland (266528), the Finnish Cancer Society, The Nordic Cancer Union and the Sigrid Juselius Foundation. The GWS population allele and genotype frequencies were obtained from the data source funded by the Nordic Center of Excellence in Disease Genetics based on samples regionally selected from Finland, Sweden and Denmark. The HERPACC was supported by a Grant-in-Aid for Scientific Research on Priority Areas from the Ministry of Education, Science, Sports, Culture and Technology of Japan, by a Grant-in-Aid for the Third Term Comprehensive 10-Year Strategy for Cancer Control from Ministry Health, Labour and Welfare of Japan, by Health and Labour Sciences Research Grants for Research on Applying Health Technology from Ministry Health, Labour and Welfare of Japan and by National Cancer Center Research and Development Fund. The HMBCS was supported by a grant from the Friends of Hannover Medical School and by the Rudolf Bartling Foundation. Financial support for KARBAC was provided through the regional agreement on medical training and clinical research (ALF) between Stockholm County Council and Karolinska Institutet, The Swedish Cancer Society and the Gustav V Jubilee foundation. The KBCP was financially supported by the special Government Funding (EVO) of Kuopio University Hospital grants, Cancer Fund of North Savo, the Finnish Cancer Organizations, the Academy of Finland and by the strategic funding of the University of Eastern Finland. kConFab is supported by grants from the National Breast Cancer Foundation, the NHMRC, the Queensland Cancer Fund, the Cancer Councils of New South Wales, Victoria, Tasmania and South Australia and the Cancer Foundation of Western Australia. The kConFab Clinical Follow Up Study was funded by the NHMRC [145684, 288704, 454508]. Financial support for the AOCS was provided by the United States Army Medical Research and Materiel Command [DAMD17-01-1-0729], the Cancer Council of Tasmania and Cancer Foundation of Western Australia and the NHMRC [199600]. G.C.T. and P.W. are supported by the NHMRC. LAABC is supported by grants (1RB-0287, 3PB-0102, 5PB-0018, 10PB-0098) from the California Breast Cancer Research Program. Incident breast cancer cases were collected by the USC Cancer Surveillance Program (CSP), which is supported under subcontract by the California Department of Health. The CSP is also part of the National Cancer Institute's Division of Cancer Prevention and Control Surveillance, Epidemiology, and End Results Program, under contract number N01CN25403. LMBC is supported by the 'Stichting tegen Kanker' (232-2008 and 196-2010). Diether Lambrechts is supported by the FWO and the KULPFV/10/016-SymBioSysII. The MARIE study was supported by the Deutsche Krebshilfe e.V. [70-2892-BR I], the Hamburg Cancer Society, the German Cancer Research Center and the Federal Ministry of Education and Research (BMBF) Germany [01KH0402, 01KH0408, 01KH0409]. MBCSG is supported by grants from the Italian Association for Cancer Research (AIRC) and by funds from the Italian citizens who allocated the 5/1000 share of their tax payment in support of the Fondazione IRCCS Istituto Nazionale Tumori, according to Italian laws (INT-Institutional strategic projects “5x1000”). The MCBCS was supported by the NIH grant CA128978, an NIH Specialized Program of Research Excellence (SPORE) in Breast Cancer [CA116201], the Breast Cancer Research Foundation, a generous gift from the David F. and Margaret T. Grohne Family Foundation and the Ting Tsung and Wei Fong Chao Foundation. MCCS cohort recruitment was funded by VicHealth and Cancer Council Victoria. The MCCS was further supported by Australian NHMRC grants 209057, 251553 and 504711 and by infrastructure provided by Cancer Council Victoria. The MEC was support by NIH grants CA63464, CA54281, CA098758 and CA132839. The work of MTLGEBCS was supported by the Quebec Breast Cancer Foundation, the Canadian Institutes of Health Research for the “CIHR Team in Familial Risks of Breast Cancer” program – grant # CRN-87521 and the Ministry of Economic Development, Innovation and Export Trade – grant # PSR-SIIRI-701. MYBRCA is funded by research grants from the Malaysian Ministry of Science, Technology and Innovation (MOSTI), Malaysian Ministry of Higher Education (UM.C/HlR/MOHE/06) and Cancer Research Initiatives Foundation (CARIF). Additional controls were recruited by the Singapore Eye Research Institute, which was supported by a grant from the Biomedical Research Council (BMRC08/1/35/19/550), Singapore and the National medical Research Council, Singapore (NMRC/CG/SERI/2010). The NBCS was supported by grants from the Norwegian Research council, 155218/V40, 175240/S10 to ALBD, FUGE-NFR 181600/V11 to VNK and a Swizz Bridge Award to ALBD. The NBCS was supported by grants from the Norwegian Research council, 155218/V40, 175240/S10 to ALBD, FUGE-NFR 181600/V11 to VNK and a Swizz Bridge Award to ALBD. The NBHS was supported by NIH grant R01CA100374. Biological sample preparation was conducted the Survey and Biospecimen Shared Resource, which is supported by P30 CA68485. The OBCS was supported by research grants from the Finnish Cancer Foundation, the Academy of Finland Centre of Excellence grant 251314, the Sigrid Juselius Foundation, the University of Oulu, and the Oulu University Hospital special Govermental EVO Research Funds. The OFBCR work was supported by grant UM1 CA164920 from the National Cancer Institute. The content of this manuscript does not necessarily reflect the views or policies of the National Cancer Institute or any of the collaborating centers in the Breast Cancer Family Registry (BCFR), nor does mention of trade names, commercial products, or organizations imply endorsement by the US Government or the BCFR. The ORIGO study was supported by the Dutch Cancer Society (RUL 1997-1505) and the Biobanking and Biomolecular Resources Research Infrastructure (BBMRI-NL CP16). The PBCS was funded by Intramural Research Funds of the National Cancer Institute, Department of Health and Human Services, USA. The pKARMA study was supported by MĂ€rit and Hans Rausings Initiative Against Breast Cancer. The RBCS was funded by the Dutch Cancer Society (DDHK 2004-3124, DDHK 2009-4318). The SASBAC study was supported by funding from the Agency for Science, Technology and Research of Singapore (A*STAR), the US National Institute of Health (NIH) and the Susan G. Komen Breast Cancer Foundation. The SBCGS was supported primarily by NIH grants R01CA64277, R01CA148667, and R37CA70867. Biological sample preparation was conducted the Survey and Biospecimen Shared Resource, which is supported by P30 CA68485. The SBCS was supported by Yorkshire Cancer Research awards S295, S299, S305PA, and by the Sheffield Experimental Cancer Medicine Centre Network. NJC was supported by NCI grant R01 CA163353 and The Avon Foundation (02-2009-080). The SCCS is supported by a grant from the National Institutes of Health (R01 CA092447). Data on SCCS cancer cases used in this publication were provided by the Alabama Statewide Cancer Registry; Kentucky Cancer Registry, Lexington, KY; Tennessee Department of Health, Office of Cancer Surveillance; Florida Cancer Data System; North Carolina Central Cancer Registry, North Carolina Division of Public Health; Georgia Comprehensive Cancer Registry; Louisiana Tumor Registry; Mississippi Cancer Registry; South Carolina Central Cancer Registry; Virginia Department of Health, Virginia Cancer Registry; Arkansas Department of Health, Cancer Registry, 4815 W. Markham, Little Rock, AR 72205. The Arkansas Central Cancer Registry is fully funded by a grant from National Program of Cancer Registries, Centers for Disease Control and Prevention (CDC). Data on SCCS cancer cases from Mississippi were collected by the Mississippi Cancer Registry which participates in the National Program of Cancer Registries (NPCR) of the Centers for Disease Control and Prevention (CDC). The contents of this publication are solely the responsibility of the authors and do not necessarily represent the official views of the CDC or the Mississippi Cancer Registry. SEARCH is funded by programme grants from Cancer Research UK [C490/A10124, C490/A16561] and supported by the UK National Institute for Health Research Biomedical Research Centre at the University of Cambridge. The SEBCS was supported by the Korea Health 21 R&D Project [AO30001], Ministry of Health and Welfare, Republic of Korea. SGBCC is funded by the National Medical Research Council start-up Grant and Centre Grant (NMRC/CG/NCIS /2010). Additional controls were recruited by the Singapore Consortium of Cohort Studies-Multi-ethnic cohort (SCCS-MEC), which was funded by the Biomedical Research Council, grant number: 05/1/21/19/425. SKKDKFZS is supported by the DKFZ. The SZBCS was supported by Grant PBZ_KBN_122/P05/2004. The TBCS was funded by The National Cancer Institute Thailand. The TNBCC was supported by: MCBCS (National Institutes of Health Grants CA122340 and a Specialized Program of Research Excellence (SPORE) in Breast Cancer (CA116201), a generous gift from the David F. and Margaret T. Grohne Family Foundation and the Ting Tsung and Wei Fong Chao Foundation. This research has been partly financed by the European Union (European Social Fund – ESF) and Greek national funds through the Operational Program "Education and Lifelong Learning" of the National Strategic Reference Framework (NSRF) - Research Funding Program of the General Secretariat for Research & Technology: ARISTEIA. Investing in knowledge society through the European Social Fund; and the Stefanie Spielman Breast Fund and the Ohio State University Comprehensive Cancer Center. The TWBCS is supported by the Taiwan Biobank project of the Institute of Biomedical Sciences, Academia Sinica, Taiwan. The UKBGS is funded by Breakthrough Breast Cancer and the Institute of Cancer Research (ICR). ICR acknowledges NHS funding to the NIHR Biomedical Research Centre. The Nurses’ Health Studies (CGEMS) are supported by NIH grants CA 65725, CA87969, CA49449, CA67262, CA50385 and 5UO1CA098233. The UK2 GWAS was funded by Wellcome Trust and Cancer Research UK. It included samples collected through the FBCS study, which is funded by Cancer Research UK [C8620/A8372]. It included control data obtained through the WTCCC which was funded by the Wellcome Trust. The DFBBCS GWAS was funded by The Netherlands Organisation for Scientific Research (NWO) as part of a ZonMw/VIDI grant number 91756341. Control GWA genotype data from the Rotterdam Study were funded by NWO Groot Investments (project nr. 175.010.2005.011). We thank all the individuals who took part in these studies and all the researchers, clinicians, technicians and administrative staff who have enabled this work to be carried out. This study would not have been possible without the contributions of the following: Andrew Berchuck (OCAC), Rosalind A. Eeles, Ali Amin Al Olama, Zsofia Kote-Jarai, Sara Benlloch (PRACTICAL), Antonis Antoniou, Lesley McGuffog, Ken Offit (CIMBA), Andrew Lee, and Ed Dicks, and the staff of the Centre for Genetic Epidemiology Laboratory, the staff of the CNIO genotyping unit, Sylvie LaBoissiĂšre and Frederic Robidoux and the staff of the McGill University and GĂ©nome QuĂ©bec Innovation Centre, the staff of the Copenhagen DNA laboratory, and Julie M. Cunningham, Sharon A. Windebank, Christopher A. Hilker, Jeffrey Meyer and the staff of Mayo Clinic Genotyping Core Facility. We also thank Maggie Angelakos, Judi Maskiell, Gillian Dite (ABCFS), and extend our thanks to the many women and their families that generously participated in the Australian Breast Cancer Family Study and consented to us accessing their pathology material. JLH is a National Health and Medical Research Council Australia Fellow. MCS is a National Health and Medical Research Council Senior Research Fellow. JLH and MCS are both group leaders of the Victoria Breast Cancer Research Consortium. We thank Sten Cornelissen, Richard van Hien, Linde Braaf, Frans Hogervorst, Senno Verhoef, Ellen van der Schoot, Femke Atsma (ABCS). The ACP study wishes to thank the participants in the Thai Breast Cancer study. Special Thanks also go to the Thai Ministry of Public Health (MOPH), doctors and nurses who helped with the data collection process. Finally, the study would like to thank Dr Prat Boonyawongviroj, the former Permanent Secretary of MOPH and Dr Pornthep Siriwanarungsan, the Department Director-General of Disease Control who have supported the study throughout. We thank Eileen Williams, Elaine Ryder-Mills, Kara Sargus (BBCS), Niall McInerney, Gabrielle Colleran, Andrew Rowan, Angela Jones (BIGGS), Peter Bugert, and Medical Faculty Mannheim (BSUCH). We thank the staff and participants of the Copenhagen General Population Study, and for excellent technical assistance: Dorthe Uldall Andersen, Maria Birna Arnadottir, Anne Bank, and Dorthe KjeldgĂ„rd Hansen. The Danish Breast Cancer Group (DBCG) is acknowledged for the tumor information. We thank Guillermo Pita, Charo Alonso, Daniel Herrero, Nuria Álvarez, Pilar Zamora, Primitiva Menendez, the Human Genotyping-CEGEN Unit (CNIO), Hartwig Ziegler, Sonja Wolf, and Volker Hermann (ESTHER). We thank Heide Hellebrand, Stefanie Engert (GC-HBOC). GC-HBOC would like to thank the following persons for providing additional informations and samples: Prof. Dr. Norbert Arnold, Dr. Sabine Preissler-Adams, Dr. Monika Mareeva-Varon, Dr. Dieter Niederacher, Prof. Dr. Brigitte Schlegelberger, Dr. Clemens MĂŒl. The GENICA Network: Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart, and University of TĂŒbingen, Germany; [HB, Wing-Yee Lo, Christina Justenhoven], German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ) [HB], Department of Internal Medicine, Evangelische Kliniken Bonn gGmbH, Johanniter Krankenhaus, Bonn, Germany [YDK, Christian Baisch], Institute of Pathology, University of Bonn, Germany [Hans-Peter Fischer], Molecular Genetics of Breast Cancer, Deutsches Krebsforschungszentrum (DKFZ), Heidelberg, Germany [Ute Hamann] and Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr University Bochum (IPA), Bochum, Germany [TB, Beate Pesch, Sylvia Rabstein, Anne Lotz]; Institute of Occupational Medicine and Maritime Medicine, University Medical Center Hamburg-Eppendorf, Germany [Volker Harth]. HEBCS thanks Kirsimari Aaltonen, Tuomas Heikkinen, and Dr. Karl von Smitten and RN Irja ErkkilĂ€ for their help with the HEBCS data and samples. We thank Peter Hillemanns, Hans Christiansen and Johann H. Karstens (HMBCS), Eija MyöhĂ€nen, Helena KemilĂ€inen (KBCP). kConFab thanks Heather Thorne, Eveline Niedermayr, the AOCS Management Group (D Bowtell, G Chenevix-Trench, A deFazio, D Gertig, A Green, P Webb), the ACS Management Group (A

    Construction and analysis of fluorescent <i>P. cynomolgi</i> using a novel centromere construct.

    No full text
    <p>(A) Dot matrix analysis of a <i>P. cynomolgi</i> and <i>P. vivax</i> putative centromere (PCEN). Graphical representation of a matrix analysis of a <i>P. cynomolgi</i> PCEN aligned against itself (<i>left</i>), <i>P. cynomolgi</i> PCEN against the <i>P. vivax</i> PCEN (<i>middle</i>) and <i>P. vivax</i> PCEN aligned against itself (<i>right</i>). The analysis was performed using Dotlet <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0054888#pone.0054888-Junier1" target="_blank">[46]</a> as described before <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0054888#pone.0054888-Iwanaga1" target="_blank">[22]</a>. The diagonal line within each analysis represents sequence identity, and the diagonal line indicates repetitive regions within each PCEN. Note the absence of the diagonal in the repetitive regions of the <i>P. cynomolgi</i> and <i>P. vivax</i> alignment (<a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0054888#pone-0054888-g001" target="_blank">Figure 1</a>, <i>middle</i> panel). (B) Schematic representation of the pPcyC-PAC-GFP<sub>hsp70</sub>-mCherry<sub>ef1α</sub> plasmid. The plasmid contains the <i>Tgdhfr-ts</i> selectable marker that confers resistance against pyrimethamine and two expression cassettes for constitutive expression of GFP and mCherry. Additionally, to maintain the plasmid throughout the life cycle, a putative <i>P. cynomolgi</i> centromere (PcyCEN) is included. (C) Schematic representation of the procedure used for transfection and analysis of <i>P. cynomolgi</i>. (D) PCR amplification of <i>gfp</i> and <i>mCherry</i> in PcyC-PAC-GFP<sub>hsp70</sub>-mCherry<sub>ef1α</sub> (PcyC-PAC) blood stage parasites. Wild type gDNA of <i>P. cynomolgi</i> M served as negative control. For a control PCR primers for the <i>circumsporozoite protein (csp)</i> were used. For primers used, see <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0054888#pone.0054888.s001" target="_blank">Table S1</a>. (E) GFP and mCherry expression throughout the life cycle of <i>P. cynomolgi.</i> GFP and mCherry expression in pPcyC-PAC-GFP<sub>hsp70</sub>-mCherry<sub>ef1α</sub> transfected <i>P. cynomolgi</i> blood stage parasites (a ring and a trophozoite or gametocyte), in oocysts 5 days post mosquito feeding and in salivary gland sporozoites 12 days post feeding. In the Brightfield panel two salivary gland lobes can be distinguished; only one lobe contains sporozoites. In the panel on the right GFP and mCherry expression is shown in Hoechst 33342 stained day 6 liver stages. Note the autofluorescence of hepatocytes in the GFP channel in contrast to the mCherry channel. A small uninucleate (arrow) and a large multinucleate liver stage are visible, confirmed by staining of fixed parasites with anti-HSP70 antibodies (<i>lower right panel</i>). White bars correspond to 10 ”m (blood and mosquito stages) and 50 ”m (liver stages).</p

    Flow cytometry and cell sorting of <i>P. cynomolgi</i> liver stage parasites, including hypnozoite-forms.

    No full text
    <p>(A) Liver stage parasites used for flowcytometry as detected by anti-HSP70 antibodies 3 days and (B) 6 days post hepatocyte infection. White bars correspond to 50 ”m. Note that day 3 cultures contain uniform small parasites while day 6 cultures contain both small and large liver stages (arrows). Flow cytometric plots of PcyC-PAC-GFP<sub>hsp70</sub>-mCherry<sub>ef1α</sub> (PcyC-PAC) <i>P. cynomolgi</i> liver stage parasites show a single GFP positive population compared to wild type parasites 3 days post hepatocyte infection (A, Gate 1) and two GFP positive populations 6 days post hepatocyte infection (B, Gates 2 and 3). The y-axis represents the PE-Texas Red Channel (for detection of autofluorescence), while the x-axis represents the GFP signal. (C) Post-sorting images of PcyC-PAC-GFP<sub>hsp70</sub>-mCherry<sub>ef1α </sub><i>P. cynomolgi</i> liver stage parasites ‘GFPlow’ (Gate 2) and ‘GFPhigh’ (Gate 3) parasites sorted at day 6 post hepatocyte infection. The upper panel shows a GFP/Brightfield overlay while the lower panel shows mCherry/Brightfield overlay. The panels below show close-ups of the sorted parasites revealing the size differences between the ‘GFPlow’ and ‘GFPhigh’ populations. White bars correspond to 50 ”m.</p

    Dutch juvenile idiopathic arthritis patients, carers and clinicians create a research agenda together following the James Lind Alliance method:a study protocol

    No full text
    \u3cp\u3eBACKGROUND: Research on Juvenile Idiopathic Arthritis (JIA) should support patients, caregivers/parents (carers) and clinicians to make important decisions in the consulting room and eventually to improve the lives of patients with JIA. Thus far these end-users of JIA-research have rarely been involved in the prioritisation of future research.\u3c/p\u3e\u3cp\u3eMAIN BODY: Dutch organisations of patients, carers and clinicians will collaboratively develop a research agenda for JIA, following the James Lind Alliance (JLA) methodology. In a 'Priority Setting Partnership' (PSP), they will gradually establish a top 10 list of the most important unanswered research questions for JIA. In this process the input from clinicians, patients and their carers will be equally valued. Additionally, focus groups will be organised to involve young people with JIA. The involvement of all contributors will be monitored and evaluated. In this manner, the project will contribute to the growing body of literature on how to involve young people in agenda setting in a meaningful way.\u3c/p\u3e\u3cp\u3eCONCLUSION: A JIA research agenda established through the JLA method and thus co-created by patients, carers and clinicians will inform researchers and research funders about the most important research questions for JIA. This will lead to research that really matters.\u3c/p\u3
    corecore