1,003 research outputs found

    The effect of universal maternal antenatal iron supplementation on neurodevelopment in offspring : a systematic review and meta-analysis

    Get PDF
    Funding One author (CJ) was funded by the Ministry of Health, Government of Sri Lanka. Availability of data and materials Supporting data can be obtained from the corresponding author.Peer reviewedPublisher PD

    Distances to Galactic high-velocity clouds. Complex C

    Get PDF
    We report the first determination of a distance bracket for the high-velocity cloud (HVC) complex C. Combined with previous measurements showing that this cloud has a metallicity of 0.15 times solar, these results provide ample evidence that complex C traces the continuing accretion of intergalactic gas falling onto the Milky Way. Accounting for both neutral and ionized hydrogen as well as He, the distance bracket implies a mass of 3-14x10^6 M_sun, and the complex represents a mass inflow of 0.1-0.25 M_sun/yr. We base our distance bracket on the detection of CaII absorption in the spectrum of the blue horizontal branch star SDSS J120404.78+623345.6, in combination with a significant non-detection toward the BHB star BS 16034-0114. These results set a strong distance bracket of 3.7-11.2 kpc on the distance to complex C. A more weakly supported lower limit of 6.7 kpc may be derived from the spectrum of the BHB star BS 16079-0017.Comment: Accepted for publication in ApJ Letter

    A Chandra Observation of the Nearby Lenticular Galaxy NGC 5102: Where are the X-ray Binaries?

    Full text link
    We present results from a 34 ks Chandra/ACIS-S observation of the nearby (d=3.1 Mpc) lenticular galaxy NGC 5102, previously shown to have an unusually low X-ray luminosity. We detect eleven X-ray point sources within the the D25D_{25} optical boundary of the galaxy (93% of the light), one third to one half of which are likely to be background AGN. One source is coincident with the optical nucleus and may be a low-luminosity AGN. Only two sources with an X-ray luminosity greater than 1037^{37} ergs s1^{-1} in the 0.5-5.0 keV band were detected, one of which is statistically likely to be a background AGN. We expected to detect 6 such luminous sources if the XRB population scales linearly with optical magnitude of the host galaxy. NGC 5102 has an unusually low number of XRBs. NGC 5102 is unusually blue for its morphological type, and has undergone at least two recent bursts of star formation. We present the results of optical/UV spectral synthesis analysis and demonstrate that a significant fraction (>>50%) of the stars in this galaxy are comparatively young (<3×109<3\times10^9 years old). If the lack of X-ray binaries is related to the relative youth of most of the stars, this would support models of LMXB formation and evolution that require wide binaries to shed angular momentum on a timescale of Gyrs. We find that NGC 5102 has an unusually low specific frequency of globular clusters (SNS_N\sim0.4), which could also explain the lack of LMXBs. We also detect diffuse X-ray emission in the central \sim1 kpc of the galaxy. This hot gas is most likely a superbubble created by multiple supernovae of massive stars born during the most recent star burst, and is driving the shock into the ISM which was inferred from optical observations.Comment: 33 pages, 7 figures, 6 tables - Accepted for publication in the Astrophysical Journa

    Kinematics of Interstellar Gas in Nearby UV-Selected Galaxies Measured with HST/STIS Spectroscopy

    Get PDF
    We measure Doppler shifts of interstellar absorption lines in HST/STIS spectra of individual star clusters in nearby UV-selected galaxies. Values for systemic velocities, which are needed to quantify outflow speeds, are taken from the literature, and verified with stellar lines. We detect outflowing gas in eight of 17 galaxies via low-ionization lines (e.g., CII, SiII, AlII), which trace cold and/or warm gas. The starbursts in our sample are intermediate in luminosity (and mass) to dwarf galaxies and luminous infrared galaxies (LIRGs), and we confirm that their outflow speeds (ranging from -100 km/s to nearly -520 km/s with an accuracy of ~80 km/s) are intermediate to those previously measured in dwarf starbursts and LIRGs. We do not detect the outflow in high-ionization lines (such as CIV or SiIV); higher quality data will be needed to empirically establish how velocities vary with the ionization state of the outflow. We do verify that the low-ionization UV lines and optical NaI doublet give roughly consistent outflow velocities solidifying an important link between studies of galactic winds at low and high redshift. To obtain higher signal-to-noise, we create a local average composite spectrum, and compare it to the high-z Lyman Break composite spectrum. Surprisingly, the low-ionization lines show similar outflow velocities in the two samples. We attribute this to a combination of weighting towards higher luminosities in the local composite, as well as both samples being on average brighter than the ``turnover'' luminosity in the v-SFR relation.Comment: 41 pages, 14 figures, accepted for publication in The Astrophysical Journa

    The Contribution of HI-Rich Galaxies to the Damped Absorber Population at z=0

    Full text link
    We present a study of HI-rich galaxies in the local universe selected from blind emission-line surveys. These galaxies represent the emission-line counterparts of local damped Lyman-alpha systems. We find that the HI cross-section of galaxies is drawn from a large range of galaxy masses below M_star, 66% of the area comes from galaxies in the range 8.5 < Log M_star < 9.7. Both because of the low mass galaxy contribution, and because of the range of galaxy types and luminosities at any given HI mass, the galaxies contributing to the HI cross-section are not exclusively L_star spirals, as is often expected. The optical and near infrared counterparts of these galaxies cover a range of types (from spirals to irregulars), luminosities (from L_star to <0.01 L_star), and surface brightnesses. The range of optical and near infrared properties as well as the kinematics for this population are consistent with the properties for the low-z damped Lyman-alpha absorbers. We also show that the number of HI-rich galaxies in the local universe does not preclude evolution of the low-z damped absorber population, but it is consistent with no evolution.Comment: 10 pages, 7 figures. To appear in "Extragalactic Gas at Low Redshift" (ASP Conf. Series, Weymann Conf.

    Hot and Diffuse Clouds near the Galactic Center Probed by Metastable H3+

    Full text link
    Using an absorption line from the metastable (J, K) = (3, 3) level of H3+ together with other lines of H3+ and CO observed along several sightlines, we have discovered a vast amount of high temperature (T ~ 250 K) and low density (n ~ 100 cm-3) gas with a large velocity dispersion in the Central Molecular Zone (CMZ) of the Galaxy, i.e., within 200 pc of the center. Approximately three fourths of the H3+ along the line of sight to the brightest source we observed, the Quintuplet object GCS 3-2, is inferred to be in the CMZ, with the remaining H3+ located in intervening spiral arms. About half of H3+ in the CMZ has velocities near ~ - 100 km s-1 indicating that it is associated with the 180 pc radius Expanding Molecular Ring which approximately forms outer boundary of the CMZ. The other half, with velocities of ~ - 50 km s-1 and ~ 0 km s-1, is probably closer to the center. CO is not very abundant in those clouds. Hot and diffuse gas in which the (3, 3) level is populated was not detected toward several dense clouds and diffuse clouds in the Galactic disk where large column densities of colder H3+ have been reported previously. Thus the newly discovered environment appears to be unique to the CMZ. The large observed H3+ column densities in the CMZ suggests an ionization rate much higher than in the diffuse interstellar medium in the Galactic disk. Our finding that the H3+ in the CMZ is almost entirely in diffuse clouds indicates that the reported volume filling factor (f &#8805; 0.1) for n &#8805; 104 cm-3 clouds in the CMZ is an overestimate by at least an order of magnitude.Comment: 33 pages, 5 figures, 3 table

    A Study of the Type II-P Supernova 2003gd in M74

    Get PDF
    We present photometric and spectroscopic data of the type II-P supernova 2003gd, which was discovered in M74 close to the end of its plateau phase. SN 2003gd is the first type II supernova to have a directly confirmed red supergiant progenitor. We compare SN 2003gd with SN 1999em, a similar type II-P supernova, and estimate an explosion date of 18th March 2003. We determine a reddening towards the supernova of E(B-V) = 0.14+/-0.06, using three different methods. We also calculate three new distances to M74 of 9.6+/-2.8 Mpc, 7.7+/-1.7 Mpc and 9.6+/-2.2 Mpc. The former was estimated using the Standardised Candle Method (SCM), for type II supernovae, and the latter two using the Brightest Supergiants Method (BSM). When combined with existing kinematic and BSM distance estimates, we derive a mean value of 9.3+/-1.8 Mpc. SN 2003gd was found to have a lower tail luminosity compared to other ``normal'' type II-P SNe bringing into question the nature of this supernova. We present a discussion concluding that this is a ``normal'' type II-P supernova which is consistent with the observed progenitor mass of 8(+4/-2) Mo.Comment: 23 pages, 24 figures to appear in MNRA

    Star Formation Histories of the LEGUS Dwarf Galaxies (I): recent History of NGC1705, NGC4449 and Holmberg II

    Get PDF
    We use HST observations from the Legacy Extragalactic UV Survey to reconstruct the recent star formation histories (SFHs) of three actively star-forming dwarf galaxies, NGC4449, Holmberg II and NGC1705, from their UV color-magnitude diagrams (CMDs). We apply a CMD fitting technique using two independent sets of stellar isochrones, PARSEC-COLIBRI and MIST, to assess the uncertainties related to stellar evolution modelling. Irrespective of the adopted stellar models, all the three dwarfs are found to have had almost constant star formation rates (SFRs) in the last 100-200 Myr, with modest enhancements (a factor of \sim2) above the 100 Myr-averaged-SFR. Significant differences among the three dwarfs are found in the overall SFR, the timing of the most recent peak and the SFR//area. The Initial Mass Function (IMF) of NGC1705 and Holmberg II is consistent with a Salpeter slope down to \approx 5 M_{\odot}, whereas it is slightly flatter, s=2.0=-2.0, in NGC4449. The SFHs derived with the two different sets of stellar models are consistent with each other, except for some quantitative details, attributable to their input assumptions. They also share the drawback that all synthetic diagrams predict a clear separation in color between upper main sequence and helium burning stars, which is not apparent in the data. Since differential reddening, significant in NGC4449, or unresolved binaries don't appear to be sufficient to fill the gap, we suggest this calls for a revision of both sets of stellar evolutionary tracks.Comment: 22 pages, 17 figures, accepted for publication on Ap

    Relations between the milnor and quillen K-theory of fields

    Get PDF
    De novo mutations in specific mTOR pathway genes cause brain overgrowth in the context of intellectual disability (ID). By analyzing 101 mMTOR-related genes in a large ID patient cohort and two independent population cohorts, we show that these genes modulate brain growth in health and disease. We report the mTOR activator gene RHEB as an ID gene that is associated with megalencephaly when mutated. Functional testing of mutant RHEB in vertebrate animal models indicates pathway hyperactivation with a concomitant increase in cell and head size, aberrant neuronal migration, and induction of seizures, concordant with the human phenotype. This study reveals that tight control of brain volume is exerted through a large community of mTOR-related genes. Human brain volume can be altered, by either rare disruptive events causing hyperactivation of the pathway, or through the collective effects of common alleles

    Cold gas accretion in galaxies

    Get PDF
    Evidence for the accretion of cold gas in galaxies has been rapidly accumulating in the past years. HI observations of galaxies and their environment have brought to light new facts and phenomena which are evidence of ongoing or recent accretion: 1) A large number of galaxies are accompanied by gas-rich dwarfs or are surrounded by HI cloud complexes, tails and filaments. It may be regarded as direct evidence of cold gas accretion in the local universe. It is probably the same kind of phenomenon of material infall as the stellar streams observed in the halos of our galaxy and M31. 2) Considerable amounts of extra-planar HI have been found in nearby spiral galaxies. While a large fraction of this gas is produced by galactic fountains, it is likely that a part of it is of extragalactic origin. 3) Spirals are known to have extended and warped outer layers of HI. It is not clear how these have formed, and how and for how long the warps can be sustained. Gas infall has been proposed as the origin. 4) The majority of galactic disks are lopsided in their morphology as well as in their kinematics. Also here recent accretion has been advocated as a possible cause. In our view, accretion takes place both through the arrival and merging of gas-rich satellites and through gas infall from the intergalactic medium (IGM). The infall may have observable effects on the disk such as bursts of star formation and lopsidedness. We infer a mean ``visible'' accretion rate of cold gas in galaxies of at least 0.2 Msol/yr. In order to reach the accretion rates needed to sustain the observed star formation (~1 Msol/yr), additional infall of large amounts of gas from the IGM seems to be required.Comment: To appear in Astronomy & Astrophysics Reviews. 34 pages. Full-resolution version available at http://www.astron.nl/~oosterlo/accretionRevie
    corecore