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Distances to Galactic high-velocity clouds. Complex C

B.P. Wakker1, D.G. York2, C. Howk3, J.C. Barentine4, R. Wilhelm5, R.F. Peletier6

H. van Woerden6, T.C. Beers7, Ž. Ivezić8, P. Richter9, U.J. Schwarz6,10

ABSTRACT

We report the first determination of a distance bracket for the high-velocity

cloud (HVC) complex C. Combined with previous measurements showing that

this cloud has a metallicity of 0.15 times solar, these results provide ample evi-

dence that complex C traces the continuing accretion of intergalactic gas falling

onto the Milky Way. Accounting for both neutral and ionized hydrogen as well as

He, the distance bracket implies a mass of 3–14×106 M⊙, and the complex rep-

resents a mass inflow of 0.1–0.25 M⊙ yr−1. We base our distance bracket on the

detection of Ca II absorption in the spectrum of the blue horizontal branch star

SDSSJ120404.78+623345.6, in combination with a significant non-detection to-

ward the BHB star BS 16034-0114. These results set a strong distance bracket of

3.7–11.2 kpc on the distance to complex C. A more weakly supported lower limit

of 6.7 kpc may be derived from the spectrum of the BHB star BS 16079-0017.
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Subject headings: ISM: clouds, Galaxy: halo, Galaxy: evolution, Galaxy: gen-

eral, Galaxy: structure, stars: distances

1. Introduction

The evolution of galaxies is strongly driven by the gas in the interstellar medium. There

is strong evidence for the infall of new material that provides fuel for galaxy growth. This

gas may originate in accreted satellite galaxies, as gas tidally pulled out of passing galaxies,

or from pristine intergalactic gas. The cool, infalling clouds appear to be embedded in an

extended (100–200 kpc radius) hot Corona (Sembach et al. 2003). Indirect evidence for

infalling gas is provided by two arguments: (a) At the current rate of star formation, all of

the ISM will be turned into stars within about a Gyr. (b) The narrowness of the distribution

of metallicities of long-lived stars implies that the metallicity of the ISM remains more or

less constant over a Hubble time, which can happen if there is a continuing inflow of low-

metallicity material with a present-day rate of about 1 M⊙ yr−1. Item (b) is known as the

“G-dwarf problem” (van den Bergh 1961). Using the infall hypothesis to solve it has been

the subject of much theoretical work (see e.g. Pagel 1997 for a good summary). Continuing

infall is essential in detailed numerical modeling of the chemical evolution of the Galaxy and

the development of abundance gradients (e.g. Chiappini et al. 2001 and references therein).

Infall of low-metallicity gas also seems necessary to reproduce the relatively high abundance

of deuterium measured in the local interstellar medium (Linksy et al. 2006).

Direct observational evidence for infalling low-metallicity gas is provided by the high-

velocity clouds (HVCs; see reviews by Wakker & van Woerden 1997; Richter 2006). Subsolar

metallicities have now been determined for eleven clouds (see van Woerden & Wakker 2004

for a summary). In particular, the metallicity of complex C is well established as 0.15 times

solar (see summary by Fox et al. 2004). Complex C also has a high deuterium abundance

(Sembach et al. 2004). Distance brackets have been more elusive, with just one known before

2006 (8–10 kpc for complex A – van Woerden et al. 1999a; Wakker et al. 2003). Thom et al.

(2006) derive an 8.8 kpc upper limit for cloud WW35, while in a separate paper (paper I,

Wakker et al. 2007), we present new results for two HVCs (9.8–15.1 kpc for complex GCP

and 5.0–11.7 kpc for the Cohen Stream). In this letter we report a distance bracket for

the HVC covering the largest sky area – complex C. We summarize our method in Sect. 2.

The data are described in Sect. 3, the results in Sect. 4, while in Sect. 5 we summarize the

implications.
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2. Method

To find the distance to a HVC, we search for interstellar absorption at the cloud’s

velocity in spectra of stars with known distances. A detection sets an upper limit, while a

significant non-detection sets a lower limit. A significant non-detection means that the ratio

of the expected equivalent width to the observed 3σ upper limit is sufficiently large (e.g.>3;

see Appendix item 15 in Wakker 2001). We also refer to paper I for a detailed discussion.

We find probe stars from the HK survey (Beers et al. 1996), the Sloan Digital Sky

Survey (SDSS; Fukugita et al. 1996; Gunn et al. 1998, 2006; York et al. 2000; Stoughton

et al. 2002; Pier et al. 2003; Adelman-McCarthy et al. 2007) and the 2MASS survey (Cutri

et al. 2003; Brown et al. 2004). Using color criteria we identify blue horizontal branch

(BHB) and RRLyrae candidates, for which we then obtain intermediate-resolution spectra

and photometry to derive the stellar parameters. See paper I for more details and Wilhelm

et al. (2008, in preparation) for a complete description.

3. Observations

3.1. WHT observations

In 1997, we selected several stars with estimated distances between 2 and 8 kpc projected

on the complex C core CI (Fig 1). Five of these were observed by Peletier and van Woerden

with the 4.2-m William Herschel Telescope (WHT) on La Palma on May 17/18/19 1997,

using the Utrecht Echelle Spectrograph (UES) at the WHT Nasmyth focus. The spectra

covered the wavelength range from 3610 to 4510 Å, with a velocity resolution of 6 km s−1.

The wavelength calibration was obtained with a ThAr lamp. The standard IRAF reduction

included bias and flatfield corrections, summing of pixels across the spectrum, and sky

subtraction.

A preliminary analysis of these spectra and preliminary distances to the stars yielded

a lower limit of 6.1 kpc to the distance of complex C (van Woerden et al. 1999b; Wakker

2001). We have now derived final stellar distances for three stars, using photometric data

and intermediate-resolution spectra obtained at the McDonald observatory 2.7m telescope.

Table 1 presents the basic data for these stars. All three are hot, high-gravity stars, and we

carefully checked the spectral details against the derived stellar parameters. For one star

(BS 16086-0123) we do not have classification data, and one star (BS 16034-0002) turns out

to be a cool, nearby, star.
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3.2. Keck observations

In 2007, we selected several stars from the SDSS that lie projected onto core CIII (see

Fig. 1), with distances ranging from 9.3 to 40.6 kpc. These distances are based on SDSS

spectroscopic and photometric data. On April 24 2007 Barentine observed three of these

using the upgraded High Resolution Echelle Spectrometer (HIRES; Vogt et al. 1994) on the

Keck I telescope. The 2004 HIRES upgrade replaced the single CCD with a three-CCD

mosaic, including two with enhanced blue sensitivity. All data were collected using the

UV cross disperser and the C5 decker (1.′′15 wide slit). The data were binned by 2 pixels

(0.′′24) in the spatial direction. The seeing was approximately 1.′′5. The spectra cover the

wavelength range 3380 to 4330 Å and have a spectral resolution of 8.8 km s−1. Three stars

could be observed before weather conditions forced the telescope to close for the night. Two

are useful (see Table 1), while for SDSSJ120557.16+625251.6 the stellar Ca II line obscures

the interstellar lines.

The spectra were extracted by Howk using the HIRedux package (v2.2) of J.X. Prochaska.1

The two-dimensional echelle images were bias-subtracted, flat-fielded, and wavelength-calibrated

using the HIRES ThAr and quartz (flat field) lamps. One-dimensional spectra are extracted

using an optimal extraction routine, and individual exposures and orders were co-added with

an inverse variance weighting. The blaze function of the instrument was removed (before

co-adding orders) by fitting a polynomial to the average flux distribution of the orders within

each of the three CCDs.

3.3. H I data

We also have 21-cm H I profiles toward the probe stars. Effelsberg spectra (9.′7, 1 km s−1

resolution; Wakker et al. 2001) are available for the stars observed with the WHT. For the

Keck stars we use the LAB dataset of Kalberla et al. (2005; 36′, 1 km s−1 resolution).

However, Wakker et al. (2001) found that N(H I) measured with a 36′ beam can be up to

a factor 2.5 larger or smaller than N(H I) measured with a 9.′7 beam; the ratio distribution

has a mean of 1 and rms of 0.2. The H I column densities therefore have a large (>20%)

systematic uncertainty. Higher resolution observations (∼1′) with a synthesis telescope are

needed to obtain more accurate values.

1Available through: http://www.ucolick.org/∼xavier/IDL/.

http://www.ucolick.org/~xavier/IDL/
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4. Results

Columns 8–13 of Table 1 list the H I and Ca II measurements, including predictions

for the equivalent width (EW) based on the relation between N(H I) and Ca II abundance

found by Wakker & Mathis (2000; see notes). Figure 2 shows the Ca II K and H and H I

21-cm spectra for the four stars that yield significant results.

We detect Ca II K and H absorption associated with complex C toward the star

SDSSJ120404.78+623345.6, with EW(K)=42±3±4 mÅ and EW(H)=19±6±3 mÅ. The first

error is statistical error associated with the noise in the spectrum and the placement of the

continuum. The second error is a systematic error associated with a 3 km s−1 uncertainty

in choosing the velocity limits of the equivalent width integration. See Wakker et al. (2003)

for a full discussion of these errors. That this line is interstellar is shown by two facts. (a)

It is much narrower (FWHM 6.7 km s−1) than the stellar lines (FWHM ∼15 km s−1). (b)

Stars with effective temperatures of about 7000 K do not have a stellar line at this location

(see Fig. 3). The distance of SDSSJ120404.78+623345.6 is found to be 10.9±0.7 kpc. As we

discuss in Paper I, this implies a 68% confidence interval for the upper limit on the distance

of complex C of D∗+0.47σ(D∗)= 11.2 kpc.

The three WHT stars yield non-detections for Ca II in complex C. The spectrum of

BS 16079-0017 (D=8,1±2.9 kpc) shows many broad stellar lines, but no narrow interstellar

line is visible at the velocity of complex C. This star thus sets a tentative lower limit of

6.7 kpc to the distance of complex C. On the other hand, a firm lower limit of 3.7 kpc is set

by BS16034-0114 (D=3.8±0.3 kpc), whose spectrum shows few stellar lines and which has

EW(expected)/3σ(EW)=11. The star BS 16079-0015 also yields a significant non-detection,

but since it is closer than BS1̇6034-0114, we do not show its spectrum in Fig. 2.

Complex C is also not detected toward the star SDSSJ121611.13+645811.0, even though

this star is more distant than SDSSJ120404.78+623345.6. However, the expected EW is only

a factor 2.5 higher than the 3σ limit. Considering possible intrinsic variations in the Ca II

abundance, and the large uncertainty in the H I column density (see above), this non-

detection is not considered significant, though only marginally so. In fact, there is a hint of

an interstellar absorption line at the velocity of complex C (see Fig. 2). Data with higher

S/N ratio are needed to resolve this issue.

5. Conclusions

Forty years after the first attempt (Prata & Wallerstein 1967), we report the first suc-

cessful detection of interstellar Ca II H and K absorption from HVC complex C. This sets an
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upper limit on the distance of core CIII (left side in Fig. 1) of 11.2 kpc. For core CI (right

side in Fig. 1) we find a lower limit of 3.7 kpc, possibly 6.7 kpc. Although the stars are 27◦

apart on the sky, it is still safe to conclude that complex C is located at Galactocentric radius

<14 kpc, and lies high above the Galactic plane (z=3–9 kpc). A more precise determination

requires a lower limit for core CIII and an upper limit for CI.

Integrating N(H I) across the cloud, we estimate M(H I) as 0.7–6×106 M⊙. Hα emission

has also been detected (Tufte et al. 1998). We can assume either that the H+ and H I are

thorougly mixed or that the H+ originates in a photoionized skin around the cloud. In either

case, the observed Hα intensity suggests that there is roughly as much ionized as neutral

gas.

We can also estimate the mass inflow associated with complex C, using a method de-

scribed in paper I. Including the neutral and ionized hydrogen, as well as a 40% contribution

from helium, we derive that complex C represents about 0.1–0.25 M⊙ yr−1 of infalling gas.

This is a substantial fraction of the theoretically required amount of 1 M⊙ yr−1. Other HVCs

may contribute the rest, but we have not yet determined distances and metallicities for the

most likely candidates.

From our results, we conclude that the mystery of the distances to the HVCs is beginning

to be solved. The evidence shows that several HVCs are located in the upper reaches of the

gaseous Galactic Halo and that they contribute significantly to the inflow of metal-poor gas

onto the Galaxy. Once the mass inflow rate is constrained from observations of a sufficient

number of HVCs, the next step will be to determine their three-dimensional structure, so that

we can use their velocities and galactic location to derive orbits and solve the outstanding

mystery of their ultimate origins.
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Table 1. Stellar and interstellar data

object la ba distb vc
∗

Texp
d S/Ne vHVC

f N(H I)f Wg
exp Wg

exp Wh
obs Wh

obs

(K) (H) (K) (H)
◦ ◦ kpc kms−1 sec kms−1 1018cm−2 mÅ mÅ mÅ mÅ

(1) (2) (3) (4) (5) (6) (7) ) (8) (9) (10) (11) (12) (13)

SDSS J121611.13+645811.0 128.94 51.74 12.5±0.4 −306 1000 8 −156 59.3±1.1 106 62 <43 <49

−51 127.2±2.5 215 161 210±11±4 122±16±5

SDSS J120404.78+623345.6 132.12 53.71 10.9±0.7 −389 1600 20 −145 31.2±0.8 42 23 42±3±4 19±6±3

−48 103.1±1.3 186 130 – 113±15±3

BS 16079-0017 91.05 46.60 8.1±2.9 −208 1800 20k
−139 32.5±1.2 45 24 <16 –

BS 16034-0114i 89.39 45.07 3.8±0.3 40 3600 16 −123 71.6±1.3 132 82 <12 <21

BS 16079-0015j 90.69 46.46 2.0±0.2 −234 1800 62l
−134 50.1±3.0 85 48 <8 –

Note. — a: Columns 2 and 3 give the Galactic longitude and latitude of the stars; b: Column 4 is the distance as

determined by Wilhelm et al. (2008, in preparation); c: Column 5 gives the stellar velocity (relative to the LSR), as measured

from Ca II and Fe I lines. d: Column 6 is the exposure time with the WHT (BS stars) or Keck (SDSS stars); e: Column 7

gives the S/N ratio in Ca II K near the HVC velocity; f: Columns 8 and 9 give the velocity (relative to the LSR) and H I
column density of complex C in the direction of the star. Values are based on the LAB survey (Kalberla et al. 2005) for

SDSS stars, and on our Effelsberg data (Wakker et al. 2001) for BS stars; g: Columns 10 and 11 give the expected K and

H equivalent widths, using the relation log(N(Ca II)/N(H I)) = −7.76−0.78 (log(N(H I))−19.5) found by Wakker & Mathis

(2000). Note that the uncertainty in N(H I) due to the large radio beamsize produces an uncertainty of about 20 mÅ in these

prediction. h: Columns 12 and 13 show the observed K and H equivalent widths or 3σ upper limits; i: alternative names

2MASS J160007.91+575125.4 and BS16079-0065; j: alternative name 2MASS J154747.53+580646.4; k: there are too many

stellar lines to calculate an Ca II H error; l: the error used for calculating the S/N includes variations due to many weak

stellar lines.
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Fig. 1.— H I map of complex C, based on the data of Hulsbosch & Wakker (1988). Colors

represent LSR velocities, as coded in the wedge. Half circles show positions with multiple

H I components. Contour levels are at brightness temperatures of 0.05, 0.25, 0.5 and 1 K.

The positions of the stars discussed in this paper are shown by the symbols – closed stars

for the detections, closed triangles for the significant non-detections, open circles for non-

significant non-detections. The symbol diameters are proportional to the stellar distances.

Several cores inside complex C are labeled.
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Fig. 2.— Spectra near Ca II K, H and H I for the four most significant stars in our sample.

Note that the Keck data are flux-calibrated (units 10−15 erg cm−2 s−1 Å−1), while the WHT

data are not. Vertical lines are placed at the velocity of the low-, intermediate- and high-

velocity H I emission components, while detected absorption lines are labeled “cpxC” and

“IVC”. The locations of stellar Ca II and Fe II lines are shown by the (*). Note that near

the H line toward BS16079-0017 there are many unidentified stellar lines.
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Fig. 3.— Spectra of three stars, shifted to the stellar reference frame. The top two (2MASS)

stars were observed with the VLT by Wakker et al. (2007; paper I). Most of the stellar lines

can be identified as Fe I or Fe II absorption. Some features have not yet been identified.

Clearly, no stellar line is expected at the wavelength of the complex C Ca II K absorp-

tion. The two-component intermediate-velocity and low-velocity Ca II K absorption in the

direction of SDSSJ120404.78+623345.6 blends with stellar Fe II absorption.
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