19,969 research outputs found

    A polarity reversal in the large-scale magnetic field of the rapidly rotating Sun HD 190771

    Full text link
    Aims. We investigate the long-term evolution of the large-scale photospheric magnetic field geometry of the solar-type star HD 190771. With fundamental parameters very close to those of the Sun except for a shorter rotation period of 8.8 d, HD 190771 provides us with a first insight into the specific impact of the rotation rate in the dynamo generation of magnetic fields in 1 MM_\odot stars. Methods. We use circularly polarized, high-resolution spectra obtained with the NARVAL spectropolarimeter (Observatoire du Pic du Midi, France) and compute cross-correlation line profiles with high signal-to-noise ratio to detect polarized Zeeman signatures. From three phase-resolved data sets collected during the summers of 2007, 2008, and 2009, we model the large-scale photospheric magnetic field of the star by means of Zeeman-Doppler imaging and follow its temporal evolution. Results. The comparison of the magnetic maps shows that a polarity reversal of the axisymmetric component of the large-scale magnetic field occurred between 2007 and 2008, this evolution being observed in both the poloidal and toroidal magnetic components. Between 2008 and 2009, another type of global evolution occured, characterized by a sharp decrease of the fraction of magnetic energy stored in the toroidal component. These changes were not accompanied by significant evolution in the total photospheric magnetic energy. Using our spectra to perform radial velocity measurements, we also detect a very low-mass stellar companion to HD 190771.Comment: Accepted by Astronomy and Astrophysics (Letter to the Editor

    Slow roll inflation in the presence of a dark energy coupling

    Get PDF
    In models of coupled dark energy, in which a dark energy scalar field couples to other matter components, it is natural to expect a coupling to the inflaton as well. We explore the consequences of such a coupling in the context of single-field slow-roll inflation. Assuming an exponential potential for the quintessence field we show that the coupling to the inflaton causes the quintessence field to be attracted toward the minimum of the effective potential. If the coupling is large enough, the field is heavy and is located at the minimum. We show how this affects the expansion rate and the slow-roll of the inflaton field, and therefore the primordial perturbations generated during inflation. We further show that the coupling has an important impact on the processes of reheating and preheating

    General energy bounds for systems of bosons with soft cores

    Full text link
    We study a bound system of N identical bosons interacting by model pair potentials of the form V(r) = A sgn(p)r^p + B/r^2, A > 0, B >= 0. By using a variational trial function and the `equivalent 2-body method', we find explicit upper and lower bound formulas for the N-particle ground-state energy in arbitrary spatial dimensions d > 2 for the two cases p = 2 and p = -1. It is demonstrated that the upper bound can be systematically improved with the aid of a special large-N limit in collective field theory

    Symmetries of Bianchi I space-times

    Get PDF
    All diagonal proper Bianchi I space-times are determined which admit certain important symmetries. It is shown that for Homotheties, Conformal motions and Kinematic Self-Similarities the resulting space-times are defined explicitly in terms of a set of parameters whereas Affine Collineations, Ricci Collineations and Curvature Collineations, if they are admitted, they determine the metric modulo certain algebraic conditions. In all cases the symmetry vectors are explicitly computed. The physical and the geometrical consequences of the results are discussed and a new anisitropic fluid, physically valid solution which admits a proper conformal Killing vector, is given.Comment: 19 pages, LaTex, Accepted for publication in Journal of Mathematical Physic

    The role of salt bridges, charge density, and subunit flexibility in determining disassembly routes of protein complexes

    Get PDF
    Mass spectrometry can be used to characterize multiprotein complexes, defining their subunit stoichiometry and composition following solution disruption and collision-induced dissociation (CID). While CID of protein complexes in the gas phase typically results in the dissociation of unfolded subunits, a second atypical route is possible wherein compact subunits or subcomplexes are ejected without unfolding. Because tertiary structure and subunit interactions may be retained, this is the preferred route for structural investigations. How can we influence which pathway is adopted? By studying properties of a series of homomeric and heteromeric protein complexes and varying their overall charge in solution, we found that low subunit flexibility, higher charge densities, fewer salt bridges, and smaller interfaces are likely to be involved in promoting dissociation routes without unfolding. Manipulating the charge on a protein complex therefore enables us to direct dissociation through structurally informative pathways that mimic those followed in solution

    Circumstellar masers in the Magellanic Clouds

    Full text link
    We have searched for 22 GHz H2O and 43/86/129 GHz SiO masers in bright IRAS point sources in the SMC and LMC, to test whether the kinematics of the mass loss from these stars depends on metallicity. H2O masers were detected in the red supergiants IRAS04553-6825 and IRAS05280-6910, and tentatively in the luminous IR object IRAS05216-6753 and the AGB star IRAS05329-6708. SiO masers were detected in IRAS04553-6825. The outflow velocity increases between the H2O masing zone near the dust-formation region and the more distant OH masing zone from 18 to 26 km/s for IRAS04553-6825 and from 6 to 17 km/s for IRAS05280-6910. The total sample of LMC targets is analysed in comparison with circumstellar masers in the Galactic Centre. The photon fluxes of circumstellar masers in the LMC are very similar to those in the Galactic Centre. The expansion velocities in the LMC appear to be 20% lower than for similarly bright OH masers in the Galactic Centre, but the data are consistent with no difference in expansion velocity. OH/IR stars in the LMC appear to have slower accelerating envelopes than OH/IR stars in the Galactic Centre. Masers in the LMC have blue-asymmetric emission profiles. This may be due to the amplification of stellar and/or free-free radiation, rather than the amplification of dust emission, and may be more pronounced in low metallicity envelopes. SiO maser strength increases with the photometric amplitude at 2.2 micron but is independent of the photometric amplitude at 10 micron. This suggests a strong connection between shocks in the dust-free SiO masing zone and the dust formation process. Appendices describe H2O maser emission from R Dor in the Milky Way, optical echelle spectroscopy of IRAS04553-6825, and the properties of masers in the Galactic Centre (Abridged).Comment: 19 pages, 17 figures. Accepted for publication in Astronomy & Astrophysics Main Journa

    Straight Line Orbits in Hamiltonian Flows

    Full text link
    We investigate periodic straight-line orbits (SLO) in Hamiltonian force fields using both direct and inverse methods. A general theorem is proven for natural Hamiltonians quadratic in the momenta in arbitrary dimension and specialized to two and three dimension. Next we specialize to homogeneous potentials and their superpositions, including the familiar H\'enon-Heiles problem. It is shown that SLO's can exist for arbitrary finite superpositions of NN-forms. The results are applied to a family of generalized H\'enon-Heiles potentials having discrete rotational symmetry. SLO's are also found for superpositions of these potentials.Comment: laTeX with 6 figure

    Interactions in high-mobility 2D electron and hole systems

    Full text link
    Electron-electron interactions mediated by impurities are studied in several high-mobility two-dimensional (electron and hole) systems where the parameter kBTτ/k_BT\tau /\hbar changes from 0.1 to 10 (τ\tau is the momentum relaxation time). This range corresponds to the \textit{intermediate} and \textit {ballistic} regimes where only a few impurities are involved in electron-electron interactions. The interaction correction to the Drude conductivity is detected in the temperature dependence of the resistance and in the magnetoresistance in parallel and perpendicular magnetic fields. The effects are analysed in terms of the recent theories of electron interactions developed for the ballistic regime. It is shown that the character of the fluctuation potential (short-range or long-range) is an important factor in the manifestation of electron-electron interactions in high-mobility 2D systems.Comment: 22 pages, 11 figures; to appear in proceedings of conference "Fundamental Problems of Mesoscopic Physics", Granada, Spain, 6-11 September, 200

    Initial Characteristics of Kepler Short Cadence Data

    Full text link
    The Kepler Mission offers two options for observations -- either Long Cadence (LC) used for the bulk of core mission science, or Short Cadence (SC) which is used for applications such as asteroseismology of solar-like stars and transit timing measurements of exoplanets where the 1-minute sampling is critical. We discuss the characteristics of SC data obtained in the 33.5-day long Quarter 1 (Q1) observations with Kepler which completed on 15 June 2009. The truly excellent time series precisions are nearly Poisson limited at 11th magnitude providing per-point measurement errors of 200 parts-per-million per minute. For extremely saturated stars near 7th magnitude precisions of 40 ppm are reached, while for background limited measurements at 17th magnitude precisions of 7 mmag are maintained. We note the presence of two additive artifacts, one that generates regularly spaced peaks in frequency, and one that involves additive offsets in the time domain inversely proportional to stellar brightness. The difference between LC and SC sampling is illustrated for transit observations of TrES-2.Comment: 5 pages, 4 figures, ApJ Letters in pres
    corecore