19,969 research outputs found
A polarity reversal in the large-scale magnetic field of the rapidly rotating Sun HD 190771
Aims. We investigate the long-term evolution of the large-scale photospheric
magnetic field geometry of the solar-type star HD 190771. With fundamental
parameters very close to those of the Sun except for a shorter rotation period
of 8.8 d, HD 190771 provides us with a first insight into the specific impact
of the rotation rate in the dynamo generation of magnetic fields in 1
stars.
Methods. We use circularly polarized, high-resolution spectra obtained with
the NARVAL spectropolarimeter (Observatoire du Pic du Midi, France) and compute
cross-correlation line profiles with high signal-to-noise ratio to detect
polarized Zeeman signatures. From three phase-resolved data sets collected
during the summers of 2007, 2008, and 2009, we model the large-scale
photospheric magnetic field of the star by means of Zeeman-Doppler imaging and
follow its temporal evolution.
Results. The comparison of the magnetic maps shows that a polarity reversal
of the axisymmetric component of the large-scale magnetic field occurred
between 2007 and 2008, this evolution being observed in both the poloidal and
toroidal magnetic components. Between 2008 and 2009, another type of global
evolution occured, characterized by a sharp decrease of the fraction of
magnetic energy stored in the toroidal component. These changes were not
accompanied by significant evolution in the total photospheric magnetic energy.
Using our spectra to perform radial velocity measurements, we also detect a
very low-mass stellar companion to HD 190771.Comment: Accepted by Astronomy and Astrophysics (Letter to the Editor
Slow roll inflation in the presence of a dark energy coupling
In models of coupled dark energy, in which a dark energy scalar field couples to other matter components, it is natural to expect a coupling to the inflaton as well. We explore the consequences of such a coupling in the context of single-field slow-roll inflation. Assuming an exponential potential for the quintessence field we show that the coupling to the inflaton causes the quintessence field to be attracted toward the minimum of the effective potential. If the coupling is large enough, the field is heavy and is located at the minimum. We show how this affects the expansion rate and the slow-roll of the inflaton field, and therefore the primordial perturbations generated during inflation. We further show that the coupling has an important impact on the processes of reheating and preheating
General energy bounds for systems of bosons with soft cores
We study a bound system of N identical bosons interacting by model pair
potentials of the form V(r) = A sgn(p)r^p + B/r^2, A > 0, B >= 0. By using a
variational trial function and the `equivalent 2-body method', we find explicit
upper and lower bound formulas for the N-particle ground-state energy in
arbitrary spatial dimensions d > 2 for the two cases p = 2 and p = -1. It is
demonstrated that the upper bound can be systematically improved with the aid
of a special large-N limit in collective field theory
Symmetries of Bianchi I space-times
All diagonal proper Bianchi I space-times are determined which admit certain
important symmetries. It is shown that for Homotheties, Conformal motions and
Kinematic Self-Similarities the resulting space-times are defined explicitly in
terms of a set of parameters whereas Affine Collineations, Ricci Collineations
and Curvature Collineations, if they are admitted, they determine the metric
modulo certain algebraic conditions. In all cases the symmetry vectors are
explicitly computed. The physical and the geometrical consequences of the
results are discussed and a new anisitropic fluid, physically valid solution
which admits a proper conformal Killing vector, is given.Comment: 19 pages, LaTex, Accepted for publication in Journal of Mathematical
Physic
The role of salt bridges, charge density, and subunit flexibility in determining disassembly routes of protein complexes
Mass spectrometry can be used to characterize multiprotein complexes, defining their subunit stoichiometry and composition following solution disruption and collision-induced dissociation (CID). While CID of protein complexes in the gas phase typically results in the dissociation of unfolded subunits, a second atypical route is possible wherein compact subunits or subcomplexes are ejected without unfolding. Because tertiary structure and subunit interactions may be retained, this is the preferred route for structural investigations. How can we influence which pathway is adopted? By studying properties of a series of homomeric and heteromeric protein complexes and varying their overall charge in solution, we found that low subunit flexibility, higher charge densities, fewer salt bridges, and smaller interfaces are likely to be involved in promoting dissociation routes without unfolding. Manipulating the charge on a protein complex therefore enables us to direct dissociation through structurally informative pathways that mimic those followed in solution
Circumstellar masers in the Magellanic Clouds
We have searched for 22 GHz H2O and 43/86/129 GHz SiO masers in bright IRAS
point sources in the SMC and LMC, to test whether the kinematics of the mass
loss from these stars depends on metallicity. H2O masers were detected in the
red supergiants IRAS04553-6825 and IRAS05280-6910, and tentatively in the
luminous IR object IRAS05216-6753 and the AGB star IRAS05329-6708. SiO masers
were detected in IRAS04553-6825. The outflow velocity increases between the H2O
masing zone near the dust-formation region and the more distant OH masing zone
from 18 to 26 km/s for IRAS04553-6825 and from 6 to 17 km/s for IRAS05280-6910.
The total sample of LMC targets is analysed in comparison with circumstellar
masers in the Galactic Centre. The photon fluxes of circumstellar masers in the
LMC are very similar to those in the Galactic Centre. The expansion velocities
in the LMC appear to be 20% lower than for similarly bright OH masers in the
Galactic Centre, but the data are consistent with no difference in expansion
velocity. OH/IR stars in the LMC appear to have slower accelerating envelopes
than OH/IR stars in the Galactic Centre. Masers in the LMC have blue-asymmetric
emission profiles. This may be due to the amplification of stellar and/or
free-free radiation, rather than the amplification of dust emission, and may be
more pronounced in low metallicity envelopes. SiO maser strength increases with
the photometric amplitude at 2.2 micron but is independent of the photometric
amplitude at 10 micron. This suggests a strong connection between shocks in the
dust-free SiO masing zone and the dust formation process. Appendices describe
H2O maser emission from R Dor in the Milky Way, optical echelle spectroscopy of
IRAS04553-6825, and the properties of masers in the Galactic Centre (Abridged).Comment: 19 pages, 17 figures. Accepted for publication in Astronomy &
Astrophysics Main Journa
Straight Line Orbits in Hamiltonian Flows
We investigate periodic straight-line orbits (SLO) in Hamiltonian force
fields using both direct and inverse methods. A general theorem is proven for
natural Hamiltonians quadratic in the momenta in arbitrary dimension and
specialized to two and three dimension. Next we specialize to homogeneous
potentials and their superpositions, including the familiar H\'enon-Heiles
problem. It is shown that SLO's can exist for arbitrary finite superpositions
of -forms. The results are applied to a family of generalized H\'enon-Heiles
potentials having discrete rotational symmetry. SLO's are also found for
superpositions of these potentials.Comment: laTeX with 6 figure
Interactions in high-mobility 2D electron and hole systems
Electron-electron interactions mediated by impurities are studied in several
high-mobility two-dimensional (electron and hole) systems where the parameter
changes from 0.1 to 10 ( is the momentum relaxation
time). This range corresponds to the \textit{intermediate} and \textit
{ballistic} regimes where only a few impurities are involved in
electron-electron interactions. The interaction correction to the Drude
conductivity is detected in the temperature dependence of the resistance and in
the magnetoresistance in parallel and perpendicular magnetic fields. The
effects are analysed in terms of the recent theories of electron interactions
developed for the ballistic regime. It is shown that the character of the
fluctuation potential (short-range or long-range) is an important factor in the
manifestation of electron-electron interactions in high-mobility 2D systems.Comment: 22 pages, 11 figures; to appear in proceedings of conference
"Fundamental Problems of Mesoscopic Physics", Granada, Spain, 6-11 September,
200
Initial Characteristics of Kepler Short Cadence Data
The Kepler Mission offers two options for observations -- either Long Cadence
(LC) used for the bulk of core mission science, or Short Cadence (SC) which is
used for applications such as asteroseismology of solar-like stars and transit
timing measurements of exoplanets where the 1-minute sampling is critical. We
discuss the characteristics of SC data obtained in the 33.5-day long Quarter 1
(Q1) observations with Kepler which completed on 15 June 2009. The truly
excellent time series precisions are nearly Poisson limited at 11th magnitude
providing per-point measurement errors of 200 parts-per-million per minute. For
extremely saturated stars near 7th magnitude precisions of 40 ppm are reached,
while for background limited measurements at 17th magnitude precisions of 7
mmag are maintained. We note the presence of two additive artifacts, one that
generates regularly spaced peaks in frequency, and one that involves additive
offsets in the time domain inversely proportional to stellar brightness. The
difference between LC and SC sampling is illustrated for transit observations
of TrES-2.Comment: 5 pages, 4 figures, ApJ Letters in pres
Recommended from our members
Continuous Monitoring in Evolving Business Networks
The literature on continuous monitoring of cross-organizational processes, executed within virtual enterprises or business networks, considers monitoring as an issue regarding the network formation, since what can be monitored during process execution is fixed when the network is established. In particular, the impact of evolving agreements in such networks on continuous monitoring is not considered. Also, monitoring is limited to process execution progress and simple process data. In this paper, we extend the possible monitoring options by linking monitoring requirements to generic clauses in agreements established across a network and focus on the problem of preserving the continuous monitorability of these clauses when the agreements evolve, i.e. they are introduced, dropped, or updated. We discuss mechanisms to preserve continuous monitorability in a business network for different types of agreement evolution and we design a conceptual and technical architecture for a continuous monitoring IT infrastructure that implements the requirements derived from such mechanisms
- …