311 research outputs found

    Intermuscular fat: a review of the consequences and causes

    Get PDF
    pre-printMuscle's structural composition is an important factor underlying muscle strength and physical function in older adults. There is an increasing amount of research to support the clear disassociation between the loss of muscle lean tissue mass and strength with aging. This disassociation implies that factors in addition to lean muscle mass are responsible for the decreases in strength and function seen with aging. Intermuscular adipose tissue (IMAT) is a significant predictor of both muscle function and mobility function in older adults and across a wide variety of comorbid conditions such as stroke, spinal cord injury, diabetes, and COPD. IMAT is also implicated in metabolic dysfunction such as insulin resistance. The purpose of this narrative review is to provide a review of the implications of increased IMAT levels in metabolic, muscle, and mobility function. Potential treatment options to mitigate increasing levels of IMAT will also be discussed

    Eccentric exercise versus usual-care with older cancer survivors: the impact on muscle and mobility- an exploratory pilot study

    Get PDF
    Journal ArticleBackground: Resistance exercise programs with high compliance are needed to counter impaired muscle and mobility in older cancer survivors. To date outcomes have focused on older prostate cancer survivors, though more heterogeneous groups of older survivors are in-need. The purpose of this exploratory pilot study is to examine whether resistance exercise via negative eccentrically-induced work (RENEW) improves muscle and mobility in a diverse sample of older cancer survivors. Methods: A total of 40 individuals (25 female, 15 male) with a mean age of 74 (? 6) years who have survived (8.4 ? 8 years) since their cancer diagnosis (breast, prostate, colorectal and lymphoma) were assigned to a RENEW group or a non-exercise Usual-care group. RENEW was performed for 12 weeks and measures of muscle size, strength, power and mobility were made pre and post training. Results: RENEW induced increases in quadriceps lean tissue average cross sectional area (Pre: 43.2 ? 10.8 cm2; Post: 44.9 ? 10.9 cm2), knee extension peak strength (Pre: 248.3 ? 10.8 N; Post: 275.4 ? 10.9 N), leg extension muscle power (Pre: 198.2 ? 74.7 W; Post 255.5 ? 87.3 W), six minute walk distance (Pre: 417.2 ? 127.1 m; Post 466.9 ? 125.1 m) and a decrease on the time to safely descend stairs (Pre: 6.8 ? 4.5 s; Post 5.4 ? 2.5 s). A significant (P < 0.05) group x time interaction was noted for the muscle size and mobility improvements. Conclusions: This exploration of RENEW in a heterogeneous cohort of older cancer survivors demonstrates increases in muscle size, strength and power along with improved mobility. The efficacy of a high-force, low perceived exertion exercise suggests RENEW may be suited to older individuals who are survivors of cancer

    Resistance exercise with older fallers: Its impact on intermuscular adipose tissue

    Get PDF
    pre-printObjective. Greater skeletal muscle fat infiltration occurs with age and contributes to numerous negative health outcomes. The primary purpose was to determine whether intermuscular adipose tissue (IMAT) can be influenced by an exercise intervention and if a greater reduction in IMAT occurs with eccentric versus traditional resistance training. Methods. Seventy-seven older adults (age 75.5 ± 6.8) with multiple comorbidities and a history of falling completed a three-month exercise intervention paired with either eccentric or traditional resistance training. MRI of the mid-thigh was examined at three time points to determine changes in muscle composition after intervention. Results. No differences in IMAT were observed over time, and there were no differences in IMAT response between intervention groups. Participants in the traditional group lost a significant amount of lean tissue ( = 0.007) in the nine months after intervention,while participants in the eccentric group did not ( = 0.32). When IMAT levels were partitioned into high and low IMAT groups, there were differential IMAT responses to intervention with the high group lowering thigh IMAT. Conclusions.There is no decrease in thigh IMAT after a three-month exercise intervention in older adults at risk for falling and no benefit to eccentric training over traditional resistance training for reducing IMAT in these individuals

    Fat Modulates the Relationship between Sarcopenia and Physical Function in Nonobese Older Adults

    Get PDF
    It is intuitive to think that sarcopenia should be associated with declines in physical function though recent evidence questions this assertion. This study investigated the relationship between absolute and relative sarcopenia, with physical performance in 202 nonobese (mean BMI = 26.6 kg/ht2) community-dwelling older (mean age = 73.8 ± 5.9 years) adults. While absolute sarcopenia (appendicular skeletal mass (ASM)/ht2) was either not associated, or weakly associated with physical performance, relative sarcopenia (ASM/kg) demonstrated moderate (r = 0.31 to r = 0.51, P < 0.01) relationships with performance outcomes in both males and females. Knee extension strength (r = 0.27) and leg extension power (r = 0.41) were both related to absolute sarcopenia (P < 0.001) in females and not in males. Strength and power were associated with relative sarcopenia in both sexes (from r = 0.47 to r = 0.67, P < 0.001). The ratio of lean mass to total body mass, that is, relative sarcopenia, is an important consideration relative to physical function in older adults even in the absence of obesity. Stratifying these individuals into equal tertiles of total body fat revealed a trend of diminished regression coefficients across each incrementally higher fat grouping for performance measures, providing further evidence that total body fat modulates the relationship between sarcopenia and physical function

    Intramuscular Adipose Tissue, Sarcopenia, and Mobility Function in Older Individuals

    Get PDF
    Objective. Intramuscular adipose tissue (IMAT) and sarcopenia may adversely impact mobility function and physical activity. This study determined the association of locomotor muscle structure and function with mobility function in older adults. Method. 109 older adults with a variety of comorbid disease conditions were examined for thigh muscle composition via MRI, knee extensor strength via isometric dynamometry, and mobility function. The contribution of strength, quadriceps lean tissue, and IMAT to explaining the variability in mobility function was examined using multivariate linear regression models. Results. The predictors as a group contributed 27–45% of the variance in all outcome measures; however, IMAT contributed between 8–15% of the variance in all four mobility variables, while lean explained only 5% variance in only one mobility measure. Conclusions. Thigh IMAT, a newly identified muscle impairment appears to be a potent muscle variable related to the ability of older adults to move about in their community

    Improved Dynamic Postural Task Performance without Improvements in Postural Responses: The Blessing and the Curse of Dopamine Replacement

    Get PDF
    Introduction. Dopamine-replacement medications may improve mobility while not improving responses to postural challenges and could therefore increase fall risk. The purpose of this study was to measure reactive postural responses and gait-related mobility of patients with PD during ON and OFF medication conditions. Methods. Reactive postural responses to the Pull Test and performance of the Functional Gait Assessment (FGA) were recorded from 15 persons with PD during ON and OFF medication conditions. Results. Persons with PD demonstrated no significant difference in the reactive postural responses between medication conditions but demonstrated significantly better performance on the FGA when ON medications compared to OFF. Discussion/Conclusion. Dopamine-replacement medications alone may improve gait-related mobility without improvements in reactive postural responses and therefore could result in iatrogenic increases in fall risk. Rehabilitation providers should be aware of the side effects and limitations of medication treatment and implement interventions to improve postural responses

    Superior effects of eccentric to concentric knee extensor resistance training on physical fitness, insulin sensitivity and lipid profiles of elderly men

    Get PDF
    It has been reported that eccentric training of knee extensors is effective for improving blood insulin sensitivity and lipid profiles to a greater extent than concentric training in young women. However, it is not known whether this is also the case for elderly individuals. Thus, the present study tested the hypothesis that eccentric training of the knee extensors would improve physical function and health parameters (e.g., blood lipid profiles) of older adults better than concentric training. Healthy elderly men (60–76 years) were assigned to either eccentric training or concentric training group (n=13/group), and performed 30–60 eccentric or concentric contractions of knee extensors once a week. The intensity was progressively increased over 12 weeks from 10 to 100% of maximal concentric strength for eccentric training and from 50 to 100% for concentric training. Outcome measures were taken before and 4 days after the training period. The results showed that no sings of muscle damage were observed after any sessions. Functional physical fitness (e.g., 30-s chair stand) and maximal concentric contraction strength of the knee extensors increased greater (P ≤ 0.05) after eccentric training than concentric training. Homeostasis model assessment, oral glucose tolerance test and whole blood glycosylated hemoglobin

    Eccentric exercise versus Usual-care with older cancer survivors: The impact on muscle and mobility- an exploratory pilot study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Resistance exercise programs with high compliance are needed to counter impaired muscle and mobility in older cancer survivors. To date outcomes have focused on older prostate cancer survivors, though more heterogeneous groups of older survivors are in-need. The purpose of this exploratory pilot study is to examine whether resistance exercise via negative eccentrically-induced work (RENEW) improves muscle and mobility in a diverse sample of older cancer survivors.</p> <p>Methods</p> <p>A total of 40 individuals (25 female, 15 male) with a mean age of 74 (± 6) years who have survived (8.4 ± 8 years) since their cancer diagnosis (breast, prostate, colorectal and lymphoma) were assigned to a RENEW group or a non-exercise Usual-care group. RENEW was performed for 12 weeks and measures of muscle size, strength, power and mobility were made pre and post training.</p> <p>Results</p> <p>RENEW induced increases in quadriceps lean tissue average cross sectional area (Pre: 43.2 ± 10.8 cm<sup>2</sup>; Post: 44.9 ± 10.9 cm<sup>2</sup>), knee extension peak strength (Pre: 248.3 ± 10.8 N; Post: 275.4 ± 10.9 N), leg extension muscle power (Pre: 198.2 ± 74.7 W; Post 255.5 ± 87.3 W), six minute walk distance (Pre: 417.2 ± 127.1 m; Post 466.9 ± 125.1 m) and a decrease on the time to safely descend stairs (Pre: 6.8 ± 4.5 s; Post 5.4 ± 2.5 s). A significant (P < 0.05) group x time interaction was noted for the muscle size and mobility improvements.</p> <p>Conclusions</p> <p>This exploration of RENEW in a heterogeneous cohort of older cancer survivors demonstrates increases in muscle size, strength and power along with improved mobility. The efficacy of a high-force, low perceived exertion exercise suggests RENEW may be suited to older individuals who are survivors of cancer.</p> <p>Trial Registration</p> <p>ClinicalTrials.gov Identifier: <a href="http://www.clinicaltrials.gov/ct2/show/NCT00335491">NCT00335491</a></p

    Early structural remodeling and deuterium oxide-derived protein metabolic responses to eccentric and concentric loading in human skeletal muscle

    Get PDF
    We recently reported that the greatest distinguishing feature between eccentric (ECC) and concentric (CON) muscle loading lays in architectural adaptations: ECC favors increases in fascicle length (Lf), associated with distal vastus lateralis muscle (VL) hypertrophy, and CON increases in pennation angle (PA). Here, we explored the interactions between structural and morphological remodeling, assessed by ultrasound and dual x‐ray absorptiometry (DXA), and long‐term muscle protein synthesis (MPS), evaluated by deuterium oxide (D2O) tracing technique. Ten young males (23 ± 4 years) performed unilateral resistance exercise training (RET) three times/week for 4 weeks; thus, one‐leg trained concentrically while the contralateral performed ECC exercise only at 80% of either CON or ECC one repetition maximum (1RM). Subjects consumed an initial bolus of D2O (150 mL), while a 25‐mL dose was thereafter provided every 8 days. Muscle biopsies from VL midbelly (MID) and distal myotendinous junction (MTJ) were collected at 0 and 4‐weeks. MPS was then quantified via GC–pyrolysis–IRMS over the 4‐week training period. Expectedly, ECC and CON RET resulted in similar increases in VL muscle thickness (MT) (7.5% vs. 8.4%, respectively) and thigh lean mass (DXA) (2.3% vs. 3%, respectively), albeit through distinct remodeling: Lf increasing more after ECC (5%) versus CON (2%) and PA increasing after CON (7% vs. 3%). MPS did not differ between contractile modes or biopsy sites (MID‐ECC: 1.42 vs. MID‐CON: 1.4% day−1; MTJ‐ECC: 1.38 vs. MTJ‐CON: 1.39% day−1). Muscle thickness at MID site increased similarly following ECC and CON RET, reflecting a tendency for a contractile mode‐independent correlation between MPS and MT (P = 0.07; R2 = 0.18). We conclude that, unlike MT, distinct structural remodeling responses to ECC or CON are not reflected in MPS; the molecular mechanisms of distinct protein deposition, and/or the role of protein breakdown in mediating these responses remain to be defined
    corecore