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Critically ill patients demonstrate established or impending multi-organ failure which may be due
an acute condition such as sepsis or trauma, a deterioration in a chronic condition, or failure
to progress during the recovery process and is often in part due to intrinsic risk factors such
as age and concomitant disease processes (Loftus and Royal College of Surgeons of England,
2010). Survivors of critical illnesses commonly experience persisting, and sometimes permanent,
disability because of loss of muscle mass, compromised muscle function, and the subsequent loss
of strength (Iwashyna et al., 2010; Herridge et al., 2011). This process is detectable from early in
the course of the illness. Human diaphragm shows decreased fiber cross-sectional area and altered
gene expression with <2 days of mechanical ventilation (Levine et al., 2008). Healthy volunteer
studies show that within 5 days of leg immobilization there is a detectable decrease in quadriceps
cross-sectional area and strength (Dirks et al., 2014), muscle weakness is observed in patients
suffering sepsis, acute pancreatitis (Gordon et al., 2013), trauma, burns (Cioffi, 2001), and the post-
operative period, especially in those who have experienced complications of surgery. Weakness
and loss of muscle mass significantly predict mortality in older people and patients with conditions
such as chronic obstructive pulmonary disease (COPD; Marquis et al., 2002; Landi et al., 2005). A
potentially lethal combination of immobilization and inflammation combine to achieve rapid and
often catastrophic atrophy (Rudrappa et al., 2016). Sarcopenia and cachexia of chronic illness put
the older patient with significant co-morbidities at greatest risk (Unroe et al., 2010). Poor mobility
and weakness are established predictors of poor outcomes in critically ill patients (Kasotakis et al.,
2012).

Future advances in the management of the critically ill patient demand effective therapies to
minimize the decrement in skeletal muscle function. Evidence exists to support a role for early
physical therapy or rehabilitation in minimizing weakness and muscle atrophy of critical illness
(Adler and Malone, 2012; Hashem et al., 2016). However, compliance with exercise programs may
be reduced by common features of critical illness such as the circulatory instability associated
with decreased systemic resistance and vasopressor administration or compromised gas exchange
with acute respiratory distress syndrome and hospital-acquired/ventilator-associated pneumonia.
Strategies to maximize compliance with, and benefit from, physical therapy in the critically
ill patient should take these complicating features into account and provide maximal anabolic
stimulation whilst not exceeding the compromised cardiorespiratory capacity of the patient. The
authors propose that exercise paradigms that rely predominantly eccentric actionsmay circumvent
these barriers to strength training.

The metabolic demand of generating force during muscle lengthening, i.e., eccentric activity
(ECC) is greatly reduced compared to generation of similar force during muscle shortening, i.e.,
concentric activity (CON; Fenn, 1924; Abbott et al., 1952; Bassett, 2002). ECC actions classically
form part of braking or actions to lower a load with gravity, such as stair descent or downhill
walking. For the same velocity of contraction (considered negative for ECC and positive for CON),
muscle force generation in ECC contractions exceeds that of CON contraction: observations in
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healthy humans showed that ECC contractions are associated
to greater forces than CON ones, as ECC resulted in vivo 1.2–
1.4 times greater than isometric and CON peak values (Westing
et al., 1991; Franchi et al., 2014), and up to 1.6 times greater when
comparing ECC vs. CON isokinetic strength (Hollander et al.,
2007).

Exercise elicits a cardiovascular response, increasing both
heart rate and stroke volume, and thus cardiac output (Dufour
et al., 2004). Particularly for aerobic exercise, it has been shown
that these cardiovascular responses are largely driven by muscle
metabolic demands; specifically the increased rate of oxygen
uptake (VO2) that reflects the increase in oxygen utilization
within the mitochondrial respiratory chain that is the eventual
consequence of the activation of myosin ATPase activity of
type I and type IIA muscle fibers (Dufour et al., 2007). A
smaller element of the cardiovascular response to muscle activity
appears to be dependent directly upon the generation of muscle
mechanical tension (Kaufman and Hayes, 2002; Dufour et al.,
2007). The increment in VO2 with CON activity is four- to five-
fold greater than that seen with mechanical-power matched ECC
activity (Abbott et al., 1952; Dufour et al., 2004). It is therefore
possible to dissociate power/ force generation from metabolic
demand (VO2) and subsequent cardiovascular responses. This
has previously been reviewed (Isner-Horobeti et al., 2013).

Intriguingly, the reduced metabolic impact of ECC
compared to CON is not matched by a reduced tendency
to achieve structural or functional muscle adaptation to
training. Mechanical loading of contracting muscle stimulates
maintenance, or even gain, of muscle mass via signaling
pathways including the mammalian target of rapamycin complex
1 (mTORC1); these in turn promote muscle protein synthesis
(Hornberger and Chien, 2006). ECC training achieves greater
acute activation of mitogen-activated protein kinase (MAPK)
pathways (both stress-activated protein kinase, p38, extracellular
signal-regulated kinase 1 and 2, ERK1/2 and p90RSK) than does
CON, in animals (Wretman et al., 2001) and humans (Franchi
et al., 2014). Because ECC exercise may achieve generation of
greater tension forces within muscle (Narici et al., 1989; LaStayo
et al., 2003), and because MAPKs and mechanosensitive protein
focal adhesion kinase (FAK) activation has been found to be
quantitatively related to tension (Martineau and Gardiner, 2002;
Li et al., 2013), this specific loading typology could potentially
result in greater efficiency in maintaining muscle mass, at much
lower exercise metabolic cost.

Training with ECC contractions, when performed at high
intensities, is commonly associated with greater increases in total
and eccentric strength compared to CON resistance training
(Roig et al., 2009; Isner-Horobeti et al., 2013). The mechanisms
regulating changes in muscle size in response to ECC vs. CON
resistance exercise have not yet been fully elucidated, especially
in humans. There is still some debate regarding the singular
contribution of both contraction types to muscular hypertrophy
(Douglas et al., 2016). As lengthening contractions have the
possibility to generate greater muscle force than isometric and
shortening ones (Westing et al., 1991), the common belief is
that eccentric exercise may promote larger increases in muscle
size compared to concentric and isometric training (Roig et al.,

2009). However, other authors (Wernbom et al., 2007; Hyldahl
and Hubal, 2014) have suggested that if the two types of loading
are performed at same intensity and/or work volume, then it is
difficult to establish which is the best trainingmode, as significant
hypertrophy is reached in either case. Indeed, similar increases
in muscle mass have been previously reported between ECC and
CON resistance training (Franchi et al., 2014, 2015; Hyldahl and
Hubal, 2014).

Nonetheless, in spite of the similar hypertrophy, the pattern
of muscle growth with ECC loading has been shown to be
substantially different from that of CON loading (Franchi et al.,
2014; Narici et al., 2016). Investigations into the architectural
adaptations of human skeletal muscle to ECC and CON training
have shown that ECC loading promotes muscle growth through
addition of sarcomeres in series, while CON training seems to
mainly promote addition of sarcomeres in parallel (Reeves et al.,
2009; Franchi et al., 2014, 2015). Differential muscle growth in
response to CON and ECC loading reflects differential activation
of molecular signaling pathways regulating muscle growth (as
explained above). Moreover, the differential pattern of growth
may have a functional correlate, as a longer fascicle length (and
thus more sarcomeres placed in-series) is correlated to greater
muscle contraction velocities, whereas more sarcomeres placed
in-parallel (likely resulting in larger physiological cross-sectional
area), will be proportional to greater muscle force (Lieber and
Fridén, 2001).

Unaccustomed, high intensity ECC exercise can cause
myofibrillar damage, local, and systemic inflammatory responses,
delayed onset muscle soreness, initial loss of strength (Fridén
et al., 1983) and even insulin resistance (Kirwan et al., 1992). This
has perhaps discouraged consideration of the potential benefit of
ECC exercise in populations considered to be at high risk such
as the frail, elderly, and medically co-morbid. However, it should
be stressed that detectable muscle damage and inflammation are
neither inevitable nor prerequisites for the beneficial structural
and functional changes seen with ECC training. Adaptation can
be achieved without apparent damage or inflammation (Flann
et al., 2011). Gradually progressive training intensity can avoid
muscle damage and associated soreness in healthy and disease
populations (LaStayo et al., 2003, 2014; Rocha Vieira et al., 2011).

There has been some recognition that exercise modalities that
make use of an ECC component may have benefit in clinical
populations. A wide range of techniques and equipment such
as upper and lower limb ergometers exist to facilitate exercise
that achieves predominantly ECC contractions (Isner-Horobeti
et al., 2013; Hoppeler, 2016). Their application to date has
focused on rehabilitation of specific musculoskeletal conditions
and, to a lesser extent, on some chronic conditions. These
include COPD, heart failure (HF), coronary artery disease, type
2 diabetes, survivors of breast, prostate and colon cancer, and
neurological conditions including Parkinson’s disease, multiple
sclerosis and stroke (LaStayo et al., 2014). Patients with severe
COPD have been shown to tolerate progressively increasing
intensity ECC cycling with excellent compliance and no side
effects (Rocha Vieira et al., 2011). In HF, ECC training at low
rates of perceived exertion is well-tolerated and in a prospective
randomized control trial, a 30min ECC bout 3 times per week for
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7 weeks can achieve an increase in muscle strength, not seen in
controls undertaking perceived-intensity matched CON training
(Casillas et al., 2016).

However, the authors are unable to find any reports employing
ECC exercise training in patients with acute systemic illnesses,
or critical care needs, despite the well-established, disappointing
long-term outcomes associated with muscle weakness in these
patients. Numerous factors may contribute to the lack to
studies into ECC exercise training in critically ill patients.
The assumption that bedrest is a key element in the recovery
period has only been effectively challenged within the last few
decades, with the demonstration of the effectiveness of aggressive
rehabilitation and early ambulation as components of “enhanced
recovery” approach to major surgery (Varadhan et al., 2010).
Although examples exist of equipment that facilitates ECC
training (Isner-Horobeti et al., 2013), these are often bespoke
and financial constraints may limit the feasibility of providing
these facilities to clinic populations. Increasing rigor in clinical
governance and research ethics approval pathways and risk
aversion within health care institutions may also impede efforts
to undertake novel exercise regimens in patients. Finally, the
authors perceive a low awareness amongst clinicians of the
potential for ECC training to circumvent barriers to strength
training in the critically ill patient. Skepticism or ignorance about
a novel physical therapy on the part of a responsible clinicianmay
hamper efforts to recruit for such studies.

Training paradigms that minimize cardiovascular and
respiratory demands whilst promoting maintenance, or

decelerating the expected rapid loss, of muscle mass and strength
are ideally suited for use by the critically ill patient, and for
introduction at the earliest stages of rehabilitation. Whilst ECC
exercise has been explored in the treatment of several specific
injuries and chronic conditions, the potential for systemic
benefit to the critically ill patient has been overlooked. Specific
questions that remain unanswered include the extent to which
the benefits of ECC exercise can be reproduced in the presence
of the vigorous systemic inflammatory response that usually
accompanies critical illness and which is known to compromise
the responsiveness of patients to existing exercise therapies
(Walsh et al., 2015; Griffith et al., 2016; Norheim et al., 2017).

The theoretical benefits of exercise regimens designed around
eccentric contractions to the critically ill patient demand that
this be considered in future studies of physical therapy and
rehabilitation.
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