2,589 research outputs found

    Comparison of nuclear transport models with 800A-MeV La + La data

    Get PDF
    Nuclear transport models including density- and momentum-dependent mean-field effects are compared to intranuclear-cascade models and tested on recent data on inclusive p-like cross sections for 800A-MeV La+La. We find a remarkable agreement between most model calculations but a systematic disagreement with the measured yield at 20°, possibly indicating a need for modification of nuclear transport properties at high densities

    Genetic Mapping and Functional Studies of a Natural Inhibitor of the Insulin Receptor Tyrosine Kinase: The Mouse Ortholog of Human α2-HS Glycoprotein

    Get PDF
    Fetuin/α2-HS glycoprotein (α2-HSG) homologs have been identified in several species including rat, sheep, pig, rabbit, guinea pig, cattle, mouse and human. Multiple physiological roles for these homologs have been suggested, including ability to bind to hydroxyapatite crystals and to specifically inhibit the tyrosine kinase (TK) activity of the insulin receptor (IR). In this study we report the identification, cloning, and characterization of the mouse Ahsg gene and its function as an IR-TK inhibitor. Genomic clones derived from a mouse Svj 129 genomic library were sequenced in order to characterize the intron–exon organization of the mouse Ahsg gene, including an 875 bp subclone containing 154 bp upstream from the transcription start site, the first exon, and part of the first intron. A second genomic subclone harboring a 3.45 kb Bgl II fragment contained exons 2, 3 and 4 in addition to two adjacent elements within the first intron-a repetitive element of the B1 family (92 bp) and a 271 bp tract of (T,C)n * (A,G)n. We have mapped mouse Ahsg at 16 cM adjacent to the Diacylglycerol kinase 3 (Dagk3) gene on chromosome 16 by genotyping interspecific backcross panels between C57BL/6J and Mus spretus. The position is syntenic with human chromosome 3q27, where the human AHSG gene resides. Using recombinant mouse α2-HSG expressed from a recombinant baculovirus, we demonstrate that mouse α2-HSG inhibits insulin–stimulated IR autophosphorylation and IR-TKA in vitro. In addition, mouse α2-HSG (25ÎŒg/ml) completely abolishes insulin-induced DNA synthesis in H-35 rat hepatoma cells. Based on the sequence data and functional analysis, we conclude that the mouse Ahsg gene is the true ortholog of the human AHSG gene

    Epitaxial deposition of silver ultra-fine nano-clusters on defect-free surfaces of HOPG-derived few-layer graphene in a UHV multi-chamber by in situ STM, ex situ XPS, and ab initio calculations

    Get PDF
    The growth of three-dimensional ultra-fine spherical nano-particles of silver on few layers of graphene derived from highly oriented pyrolytic graphite in ultra-high vacuum were characterized using in situ scanning tunneling microscopy (STM) in conjunction with X-ray photoelectron spectroscopy. The energetics of the Ag clusters was determined by DFT simulations. The Ag clusters appeared spherical with size distribution averaging approximately 2 nm in diameter. STM revealed the preferred site for the position of the Ag atom in the C-benzene ring of graphene. Of the three sites, the C-C bridge, the C-hexagon hollow, and the direct top of the C atom, Ag prefers to stay on top of the C atom, contrary to expectation of the hexagon-close packing. Ab initio calculations confirm the lowest potential energy between Ag and the graphene structure to be at the exact site determined from STM imaging

    OPENMENDEL: A Cooperative Programming Project for Statistical Genetics

    Full text link
    Statistical methods for genomewide association studies (GWAS) continue to improve. However, the increasing volume and variety of genetic and genomic data make computational speed and ease of data manipulation mandatory in future software. In our view, a collaborative effort of statistical geneticists is required to develop open source software targeted to genetic epidemiology. Our attempt to meet this need is called the OPENMENDELproject (https://openmendel.github.io). It aims to (1) enable interactive and reproducible analyses with informative intermediate results, (2) scale to big data analytics, (3) embrace parallel and distributed computing, (4) adapt to rapid hardware evolution, (5) allow cloud computing, (6) allow integration of varied genetic data types, and (7) foster easy communication between clinicians, geneticists, statisticians, and computer scientists. This article reviews and makes recommendations to the genetic epidemiology community in the context of the OPENMENDEL project.Comment: 16 pages, 2 figures, 2 table

    Anticancer Activities of Six Selected Natural Compounds of Some Cameroonian Medicinal Plants

    Get PDF
    BACKGROUND: Natural products are well recognized as sources of drugs in several human ailments. In the present work, we carried out a preliminary screening of six natural compounds, xanthone V(1) (1); 2-acetylfuro-1,4-naphthoquinone (2); physcion (3); bisvismiaquinone (4); vismiaquinone (5); 1,8-dihydroxy-3-geranyloxy-6-methylanthraquinone (6) against MiaPaCa-2 pancreatic and CCRF-CEM leukemia cells and their multidrug-resistant subline, CEM/ADR5000. Compounds 1 and 2 were then tested in several other cancer cells and their possible mode of action were investigated. METHODOLOGY/FINDINGS: The tested compounds were previously isolated from the Cameroonian medicinal plants Vismia laurentii (1, 3, 4, 5 and 6) and Newbouldia laevis (2). The preliminary cytotoxicity results allowed the selection of xanthone V(1) and 2-acetylfuro-1,4-naphthoquinone, which were then tested on a panel of cancer cell lines. The study was also extended to the analysis of cell cycle distribution, apoptosis induction, caspase 3/7 activation and the anti-angiogenic properties of xanthone V(1) and 2-acetylfuro-1,4-naphthoquinone. IC(50) values around or below 4 ”g/ml were obtained on 64.29% and 78.57% of the tested cancer cell lines for xanthone V(1) and 2-acetylfuro-1,4-naphthoquinone, respectively. The most sensitive cell lines (IC(50)<1 ”g/ml) were breast MCF-7 (to xanthone V(1)), cervix HeLa and Caski (to xanthone V(1) and 2-acetylfuro-1,4-naphthoquinone), leukemia PF-382 and melanoma colo-38 (to 2-acetylfuro-1,4-naphthoquinone). The two compounds showed respectively, 65.8% and 59.6% inhibition of the growth of blood capillaries on the chorioallantoic membrane of quail eggs in the anti-angiogenic assay. Upon treatment with two fold IC(50) and after 72 h, the two compounds induced cell cycle arrest in S-phase, and also significant apoptosis in CCRF-CEM leukemia cells. Caspase 3/7 was activated by xanthone V(1). CONCLUSIONS/SIGNIFICANCE: The overall results of the present study provided evidence for the cytotoxicity of compounds xanthone V(1) and 2-acetylfuro-1,4-naphthoquinone, and bring supportive data for future investigations that will lead to their use in cancer therapy

    A meta-analysis of long-term effects of conservation agriculture on maize grain yield under rain-fed conditions

    Get PDF
    Conservation agriculture involves reduced tillage, permanent soil cover and crop rotations to enhance soil fertility and to supply food from a dwindling land resource. Recently, conservation agriculture has been promoted in Southern Africa, mainly for maize-based farming systems. However, maize yields under rain-fed conditions are often variable. There is therefore a need to identify factors that influence crop yield under conservation agriculture and rain-fed conditions. Here, we studied maize grain yield data from experiments lasting 5 years and more under rain-fed conditions. We assessed the effect of long-term tillage and residue retention on maize grain yield under contrasting soil textures, nitrogen input and climate. Yield variability was measured by stability analysis. Our results show an increase in maize yield over time with conservation agriculture practices that include rotation and high input use in low rainfall areas. But we observed no difference in system stability under those conditions. We observed a strong relationship between maize grain yield and annual rainfall. Our meta-analysis gave the following findings: (1) 92% of the data show that mulch cover in high rainfall areas leads to lower yields due to waterlogging; (2) 85% of data show that soil texture is important in the temporal development of conservation agriculture effects, improved yields are likely on well-drained soils; (3) 73% of the data show that conservation agriculture practices require high inputs especially N for improved yield; (4) 63% of data show that increased yields are obtained with rotation but calculations often do not include the variations in rainfall within and between seasons; (5) 56% of the data show that reduced tillage with no mulch cover leads to lower yields in semi-arid areas; and (6) when adequate fertiliser is available, rainfall is the most important determinant of yield in southern Africa. It is clear from our results that conservation agriculture needs to be targeted and adapted to specific biophysical conditions for improved impact

    New genetic loci implicated in fasting glucose homeostasis and their impact on type 2 diabetes risk.

    Get PDF
    Levels of circulating glucose are tightly regulated. To identify new loci influencing glycemic traits, we performed meta-analyses of 21 genome-wide association studies informative for fasting glucose, fasting insulin and indices of beta-cell function (HOMA-B) and insulin resistance (HOMA-IR) in up to 46,186 nondiabetic participants. Follow-up of 25 loci in up to 76,558 additional subjects identified 16 loci associated with fasting glucose and HOMA-B and two loci associated with fasting insulin and HOMA-IR. These include nine loci newly associated with fasting glucose (in or near ADCY5, MADD, ADRA2A, CRY2, FADS1, GLIS3, SLC2A2, PROX1 and C2CD4B) and one influencing fasting insulin and HOMA-IR (near IGF1). We also demonstrated association of ADCY5, PROX1, GCK, GCKR and DGKB-TMEM195 with type 2 diabetes. Within these loci, likely biological candidate genes influence signal transduction, cell proliferation, development, glucose-sensing and circadian regulation. Our results demonstrate that genetic studies of glycemic traits can identify type 2 diabetes risk loci, as well as loci containing gene variants that are associated with a modest elevation in glucose levels but are not associated with overt diabetes
    • 

    corecore