5 research outputs found

    Policy Design of Multi-Year Crop Insurance with Partial Payments

    No full text
    [[abstract]]Current crop insurance is designed to mitigate monetary fluctuations resulting from yield losses for a specific year. However, yield realization tendency can vary from year to year and may depend on the correlation of yield realizations across years. When the current single-year Yield Protection (YP) and Area Risk Protection Insurance (ARPI) contracts are extended to multiple periods, actuarially fair premium rate is expected to decrease as poor yield realizations in a year can be offset by another year's better yield realizations. In this study, we first use simulations to demonstrate how significant premium savings are possible when coverage is based on the sum of yields across years rather than on a year-by-year basis. We then describe the design of a multi-year framework of crop insurance and model the insurance using a copula approach. Insurance terms are extended to more than a year and the premium, liability, and indemnity are determined by a multi-year term. Moreover, partial payment is provided at the end of each term to offset the possibility of significant loss in a single term. County-level data obtained from the U.S. Department of Agriculture are used to demonstrate the implementations of the proposed multi-year crop insurance. The proposed multi-year plan would benefit farmers by offering insurance guarantees across years for significantly lower costs.[[notice]]補正完

    An Unusual Transduction Pathway in Human Tonic Smooth Muscle Myosin

    Get PDF
    The motor protein myosin binds actin and ATP, producing work by causing relative translation of the proteins while transducing ATP free energy. Smooth muscle myosin has one of four heavy chains encoded by the MYH11 gene that differ at the C-terminus and in the active site for ATPase due to alternate splicing. A seven-amino-acid active site insert in phasic muscle myosin is absent from the tonic isoform. Fluorescence increase in the nucleotide sensitive tryptophan (NST) accompanies nucleotide binding and hydrolysis in several myosin isoforms implying it results from a common origin within the motor. A wild-type tonic myosin (smA) construct of the enzymatic head domain (subfragment 1 or S1) has seven tryptophan residues and nucleotide-induced fluorescence enhancement like other myosins. Three smA mutants probe the molecular basis for the fluorescence enhancement. W506+ contains one tryptophan at position 506 homologous to the NST in other myosins. W506F has the native tryptophans except phenylalanine replaces W506, and W506+(Y499F) is W506+ with phenylalanine replacing Y499. W506+ lacks nucleotide-induced fluorescence enhancement probably eliminating W506 as the NST. W506F has impaired ATPase activity but retains nucleotide-induced fluorescence enhancement. Y499F replacement in W506+ partially rescues nucleotide sensitivity demonstrating the role of Y499 as an NST facilitator. The exceptional response of W506 to active site conformation opens the possibility that phasic and tonic isoforms differ in how influences from active site ATPase propagate through the protein network
    corecore