6,290 research outputs found
Interdependent network reciprocity in evolutionary games
Besides the structure of interactions within networks, also the interactions between networks are of the outmost
importance. We therefore study the outcome of the public goods game on two interdependent networks that are
connected by means of a utility function, which determines how payoffs on both networks jointly influence the
success of players in each individual network. We show that an unbiased coupling allows the spontaneous
emergence of interdependent network reciprocity, which is capable to maintain healthy levels of public
cooperation even in extremely adverse conditions. The mechanism, however, requires simultaneous formation of
correlated cooperator clusters on both networks. If this does not emerge or if the coordination process is
disturbed, network reciprocity fails, resulting in the total collapse of cooperation. Network interdependence can
thus be exploited effectively to promote cooperation past the limits imposed by isolated networks, but only if the
coordination between the interdependent networks is not disturbe
Wisdom of groups promotes cooperation in evolutionary social dilemmas
Whether or not to change strategy depends not only on the personal success of
each individual, but also on the success of others. Using this as motivation,
we study the evolution of cooperation in games that describe social dilemmas,
where the propensity to adopt a different strategy depends both on individual
fitness as well as on the strategies of neighbors. Regardless of whether the
evolutionary process is governed by pairwise or group interactions, we show
that plugging into the "wisdom of groups" strongly promotes cooperative
behavior. The more the wider knowledge is taken into account the more the
evolution of defectors is impaired. We explain this by revealing a dynamically
decelerated invasion process, by means of which interfaces separating different
domains remain smooth and defectors therefore become unable to efficiently
invade cooperators. This in turn invigorates spatial reciprocity and
establishes decentralized decision making as very beneficial for resolving
social dilemmas.Comment: 8 two-column pages, 7 figures; accepted for publication in Scientific
  Report
Resolution of the stochastic strategy spatial prisoner's dilemma by means of particle swarm optimization
We study the evolution of cooperation among selfish individuals in the
stochastic strategy spatial prisoner's dilemma game. We equip players with the
particle swarm optimization technique, and find that it may lead to highly
cooperative states even if the temptations to defect are strong. The concept of
particle swarm optimization was originally introduced within a simple model of
social dynamics that can describe the formation of a swarm, i.e., analogous to
a swarm of bees searching for a food source. Essentially, particle swarm
optimization foresees changes in the velocity profile of each player, such that
the best locations are targeted and eventually occupied. In our case, each
player keeps track of the highest payoff attained within a local topological
neighborhood and its individual highest payoff. Thus, players make use of their
own memory that keeps score of the most profitable strategy in previous
actions, as well as use of the knowledge gained by the swarm as a whole, to
find the best available strategy for themselves and the society. Following
extensive simulations of this setup, we find a significant increase in the
level of cooperation for a wide range of parameters, and also a full resolution
of the prisoner's dilemma. We also demonstrate extreme efficiency of the
optimization algorithm when dealing with environments that strongly favor the
proliferation of defection, which in turn suggests that swarming could be an
important phenomenon by means of which cooperation can be sustained even under
highly unfavorable conditions. We thus present an alternative way of
understanding the evolution of cooperative behavior and its ubiquitous presence
in nature, and we hope that this study will be inspirational for future efforts
aimed in this direction.Comment: 12 pages, 4 figures; accepted for publication in PLoS ON
Stability Analysis of Frame Slotted Aloha Protocol
Frame Slotted Aloha (FSA) protocol has been widely applied in Radio Frequency
Identification (RFID) systems as the de facto standard in tag identification.
However, very limited work has been done on the stability of FSA despite its
fundamental importance both on the theoretical characterisation of FSA
performance and its effective operation in practical systems. In order to
bridge this gap, we devote this paper to investigating the stability properties
of FSA by focusing on two physical layer models of practical importance, the
models with single packet reception and multipacket reception capabilities.
Technically, we model the FSA system backlog as a Markov chain with its states
being backlog size at the beginning of each frame. The objective is to analyze
the ergodicity of the Markov chain and demonstrate its properties in different
regions, particularly the instability region. By employing drift analysis, we
obtain the closed-form conditions for the stability of FSA and show that the
stability region is maximised when the frame length equals the backlog size in
the single packet reception model and when the ratio of the backlog size to
frame length equals in order of magnitude the maximum multipacket reception
capacity in the multipacket reception model. Furthermore, to characterise
system behavior in the instability region, we mathematically demonstrate the
existence of transience of the backlog Markov chain.Comment: 14 pages, submitted to IEEE Transaction on Information Theor
Graphene Photonics and Optoelectronics
The richness of optical and electronic properties of graphene attracts
enormous interest. Graphene has high mobility and optical transparency, in
addition to flexibility, robustness and environmental stability. So far, the
main focus has been on fundamental physics and electronic devices. However, we
believe its true potential to be in photonics and optoelectronics, where the
combination of its unique optical and electronic properties can be fully
exploited, even in the absence of a bandgap, and the linear dispersion of the
Dirac electrons enables ultra-wide-band tunability. The rise of graphene in
photonics and optoelectronics is shown by several recent results, ranging from
solar cells and light emitting devices, to touch screens, photodetectors and
ultrafast lasers. Here we review the state of the art in this emerging field.Comment: Review Nature Photonics, in pres
Plutonium in Soils from Northeast China and Its Potential Application for Evaluation of Soil Erosion
Surface and soil core samples from northeast China were analyzed for Pu isotopes. The measured Pu-240/Pu-239 atomic ratios and Pu239 + 240/Cs-137 activity ratios revealed that the global fallout is the dominant source of Pu and Cs-137 at these sites. Migration behavior of Pu varying with land type and human activities resulted in different distribution of Pu in surface soils. A sub-surface maximum followed by exponential decline of Pu239 + 240 concentrations was observed in an undisturbed soil core, with a total Pu239 + 240 inventory of 86.9 Bq/m(2) and more than 85% accumulated in 0 similar to 20 cm layers. While only half inventory of Pu was obtained in another soil core and no sub-surface maximum value occurred. Erosion of topsoil in the site should be the most possible reason for the significantly lower Pu inventory, which is also supported by the reported Cs-137 profiles. These results demonstrated that Pu could be applied as an ideal substitute of Cs-137 for soil erosion study in the future.</p
Very Cold Gas and Dark Matter
We have recently proposed a new candidate for baryonic dark matter: very cold
molecular gas, in near-isothermal equilibrium with the cosmic background
radiation at 2.73 K. The cold gas, of quasi-primordial abundances, is condensed
in a fractal structure, resembling the hierarchical structure of the detected
interstellar medium.
  We present some perspectives of detecting this very cold gas, either directly
or indirectly. The H molecule has an "ultrafine" structure, due to the
interaction between the rotation-induced magnetic moment and the nuclear spins.
But the lines fall in the km domain, and are very weak. The best opportunity
might be the UV absorption of H in front of quasars. The unexpected cold
dust component, revealed by the COBE/FIRAS submillimetric results, could also
be due to this very cold H gas, through collision-induced radiation, or
solid H grains or snowflakes. The -ray distribution, much more
radially extended than the supernovae at the origin of cosmic rays
acceleration, also points towards and extended gas distribution.Comment: 16 pages, Latex pages, crckapb macro, 3 postscript figures, uuencoded
  compressed tar file. To be published in the proceeedings of the
  "Dust-Morphology" conference, Johannesburg, 22-26 January, 1996, D. Block
  (ed.), (Kluwer Dordrecht
Genomics of Divergence along a Continuum of Parapatric Population Differentiation
MM received funding from the Max Planck innovation funds for this project. PGDF was supported by a Marie Curie European Reintegration Grant (proposal nr 270891). CE was supported by German Science Foundation grants (DFG, EI 841/4-1 and EI 841/6-1)
Rectification of electronic heat current by a hybrid thermal diode
We report the realization of an ultra-efficient low-temperature hybrid heat
current rectifier, thermal counterpart of the well-known electric diode. Our
design is based on a tunnel junction between two different elements: a normal
metal and a superconducting island. Electronic heat current asymmetry in the
structure arises from large mismatch between the thermal properties of these
two. We demonstrate experimentally temperature differences exceeding  mK
between the forward and reverse thermal bias configurations. Our device offers
a remarkably large heat rectification ratio up to  and allows its
prompt implementation in true solid-state thermal nanocircuits and
general-purpose electronic applications requiring energy harvesting or thermal
management and isolation at the nanoscale.Comment: 8 pages, 6 color figure
Modeling Bacterial DNA: Simulation of Self-avoiding Supercoiled Worm-Like Chains Including Structural Transitions of the Helix
Under supercoiling constraints, naked DNA, such as a large part of bacterial
DNA, folds into braided structures called plectonemes. The double-helix can
also undergo local structural transitions, leading to the formation of
denaturation bubbles and other alternative structures. Various polymer models
have been developed to capture these properties, with Monte-Carlo (MC)
approaches dedicated to the inference of thermodynamic properties. In this
chapter, we explain how to perform such Monte-Carlo simulations, following two
objectives. On one hand, we present the self-avoiding supercoiled Worm-Like
Chain (ssWLC) model, which is known to capture the folding properties of
supercoiled DNA, and provide a detailed explanation of a standard MC simulation
method. On the other hand, we explain how to extend this ssWLC model to include
structural transitions of the helix.Comment: Book chapter to appear in The Bacterial Nucleoid, Methods and
  Protocols, Springer serie
- …
