94 research outputs found

    Heavy Metal Concentrations in Free-Living Southern Caracaras (Caracara plancus) in the Northeast Region of Brazil

    Get PDF
    Background: With the continuously increasing release of heavy metals in the environment, mostly from anthropogenic sources, there is a need to find ways of evaluating and managing the issuance of these contaminants and correct its damages. The birds being at the top of some food chains reflect the presence of metals in the environment, keeping this in perspective, raptors have been successfully used for heavy metals biomonitoring studies in the past. The purpose of this study was to identify and quantify cadmium (Cd), mercury (Hg), lead (Pb), copper (Cu), and chromium (Cr) in the feathers and livers of free-living southern caracaras, live and dead, from Recife, Pernambuco state, Northeast of Brazil.Material, Methods & Results: Sixty-two feathers from live and dead southern caracaras and 21 livers from dead southern caracaras were analyzed by atomic absorption spectrometry for Hg and by inductively coupled plasma optical emission spectrometry for Cd, Cr, Pb, and Cu. Concentrations of Cr and Cu elements were detected in all feather and liver samples analyzed from live and dead caracaras. There was no difference in the concentration of metals between feathers of dead and live caracaras: Pb (P = 0.3576), Cd (P = 0.0792), Cr (P = 0.5475), and Cu (P = 0.3603), but significant variation was observed for Hg (P = 0.0459). The highest concentrations of Pb (P < 0.0001) and Cr (P < 0.0001) were found in the feathers than in the liver. On the other hand, the highest concentrations of Cu were found in liver samples (P = 0.0011). No significant variation in the concentrations of Cd (P = 0.7770) and Hg (P = 0.3669) was found between feathers and liver samples.Discussion: Chromium, as well as Hg, and Cu have a high affinity for keratin, which may explain the higher concentrations of Cr in caracaras feathers in this research. Lead was detected in all liver samples analyzed. Elevated levels were also found in the feathers of dead (95.2%) and live (75.6%) caracaras. The presence of Pb may be due to external contamination by pollutants, such as fossil fuels. Higher concentrations of Hg were observed in dead caracaras feathers, this concentrations change during molting but are not affected by external contamination. Metals, such as Hg, and Cd, accumulate in organisms from different trophic levels, which may indicate that this contamination comes mainly from feed. Pearson’s coefficient here showed no correlation between metals from dead caracaras feathers and livers, although a few previous studies have shown a correlation between metal concentrations from tissues and feathers. This pattern can be attributed to the different time of exposure of feathers to metals in relation to livers. The concentrations of metals in hepatic tissues reflect the levels of elements in the diet of these birds, characterizing acutely the contamination of the ecosystem. On the other hand, feathers represent the exposure in the time of molting, when the artery supplies metals, thus representing a chronic exposure. In feathers from live birds, the Pearson’s correlation analysis showed a high to moderate correlation between metals, which may suggest that they come from a similar source, but there is no way to specify the origin since the metals surveyed could be present in the soil, water, or in the prey eaten by these animals. For the purpose of environmental analyses, it is required to determine the exact source of contamination. Considering that it is possible to confirm the presence of these heavy metals in southern caracaras, these birds may be important environmental bioindicators. The development of systematic research on animals and the environment is essential for monitoring the levels of metal pollutants and evaluating their impact in order to guide measures to protect fauna and human health

    Isolation and Characterization of Plant Growth-Promotion Diazotrophic Endophytic Bacteria Associated to Sugarcane (Saccharum officinarum L.) Grown in Paraíba, Brazil

    Get PDF
    Sugarcane is an important Brazilian commodity, being usually cultivated in soils with low natural fertility. This study aimed to isolate diazotrophic endophytes from sugarcane tissues and evaluate the morphological and physiological characteristics of their colonies as well as their plant growth-promoting (PGP) traits in select diazotrophic endophytic bacteria. Fifty-six bacterial isolates were identified in the sugarcane tissues, and these isolates presented distinct morphological and physiological traits. A total of thirty-five bacterial isolates were biochemically evaluated. Overall, Bacillus was the dominant genus. Isolates of Methylobacterium spp. and Brevibacillus agri were present only in leaves, while Herbaspirillum seropedicae occurred only in stems. Except to IPA-CF45A, all isolates were nitrogenase positive. All endophytes exhibit production of indol 3-acetic acid. Over 50% of endophytes solubilize phosphate, release N-acyl homoserine lactones, and present the activity of 1-aminocyclopropane-1-carboxylic acid deaminase, catalase, lipase and protease. The network analysis showed that isolates belonged to Burkholderia, Herbaspirillum, and Methylobacterium interact with Bacillus. Bacterial endophytes exhibited distinct morphological, physiological, and PGP traits that are useful for sustainable agriculture, highlighting the isolates IPA-CC33, IPA-CF65, IPA-CC9 and IPA-CF27. Further studies on the effects of these diazotrophic endophytes and their potential for providing microbial inoculants for improving sugarcane fields will provide valuable information to maintain the sustainability and environment quality.National Council for Scientific and Technological Development 426655/2018-

    Beneficial effects of physical activity in an HIV-infected woman with lipodystrophy: a case report

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>Lipodystrophy is common in patients infected with human immunodeficiency virus receiving highly active antiretroviral therapy, and presents with morphologic changes and metabolic alterations that are associated with depressive behavior and reduced quality of life. We examined the effects of exercise training on morphological changes, lipid profile and quality of life in a woman with human immunodeficiency virus presenting with lipodystrophy.</p> <p>Case presentation</p> <p>A 31-year-old Latin-American Caucasian woman infected with human immunodeficiency virus participated in a 12-week progressive resistance exercise training program with an aerobic component. Her weight, height, skinfold thickness, body circumferences, femur and humerus diameter, blood lipid profile, maximal oxygen uptake volume, exercise duration, strength and quality of life were assessed pre-exercise and post-exercise training. After 12 weeks, she exhibited reductions in her total subcutaneous fat (18.5%), central subcutaneous fat (21.0%), peripheral subcutaneous fat (10.7%), waist circumference (WC) (4.5%), triglycerides (9.9%), total cholesterol (12.0%) and low-density lipoprotein cholesterol (8.6%). She had increased body mass (4.6%), body mass index (4.37%), humerus and femur diameter (3.0% and 2.3%, respectively), high-density lipoprotein cholesterol (16.7%), maximal oxygen uptake volume (33.3%), exercise duration (37.5%) and strength (65.5%). Quality of life measures improved mainly for psychological and physical measures, independence and social relationships.</p> <p>Conclusions</p> <p>These findings suggest that supervised progressive resistance exercise training is a safe and effective treatment for evolving morphologic and metabolic disorders in adults infected with HIV receiving highly active antiretroviral therapy, and improves their quality of life.</p

    Genome of the Avirulent Human-Infective Trypanosome—Trypanosoma rangeli

    Get PDF
    Background: Trypanosoma rangeli is a hemoflagellate protozoan parasite infecting humans and other wild and domestic mammals across Central and South America. It does not cause human disease, but it can be mistaken for the etiologic agent of Chagas disease, Trypanosoma cruzi. We have sequenced the T. rangeli genome to provide new tools for elucidating the distinct and intriguing biology of this species and the key pathways related to interaction with its arthropod and mammalian hosts.  Methodology/Principal Findings: The T. rangeli haploid genome is ,24 Mb in length, and is the smallest and least repetitive trypanosomatid genome sequenced thus far. This parasite genome has shorter subtelomeric sequences compared to those of T. cruzi and T. brucei; displays intraspecific karyotype variability and lacks minichromosomes. Of the predicted 7,613 protein coding sequences, functional annotations could be determined for 2,415, while 5,043 are hypothetical proteins, some with evidence of protein expression. 7,101 genes (93%) are shared with other trypanosomatids that infect humans. An ortholog of the dcl2 gene involved in the T. brucei RNAi pathway was found in T. rangeli, but the RNAi machinery is non-functional since the other genes in this pathway are pseudogenized. T. rangeli is highly susceptible to oxidative stress, a phenotype that may be explained by a smaller number of anti-oxidant defense enzymes and heatshock proteins.  Conclusions/Significance: Phylogenetic comparison of nuclear and mitochondrial genes indicates that T. rangeli and T. cruzi are equidistant from T. brucei. In addition to revealing new aspects of trypanosome co-evolution within the vertebrate and invertebrate hosts, comparative genomic analysis with pathogenic trypanosomatids provides valuable new information that can be further explored with the aim of developing better diagnostic tools and/or therapeutic targets

    Pervasive gaps in Amazonian ecological research

    Get PDF
    Biodiversity loss is one of the main challenges of our time,1,2 and attempts to address it require a clear un derstanding of how ecological communities respond to environmental change across time and space.3,4 While the increasing availability of global databases on ecological communities has advanced our knowledge of biodiversity sensitivity to environmental changes,5–7 vast areas of the tropics remain understudied.8–11 In the American tropics, Amazonia stands out as the world’s most diverse rainforest and the primary source of Neotropical biodiversity,12 but it remains among the least known forests in America and is often underrepre sented in biodiversity databases.13–15 To worsen this situation, human-induced modifications16,17 may elim inate pieces of the Amazon’s biodiversity puzzle before we can use them to understand how ecological com munities are responding. To increase generalization and applicability of biodiversity knowledge,18,19 it is thus crucial to reduce biases in ecological research, particularly in regions projected to face the most pronounced environmental changes. We integrate ecological community metadata of 7,694 sampling sites for multiple or ganism groups in a machine learning model framework to map the research probability across the Brazilian Amazonia, while identifying the region’s vulnerability to environmental change. 15%–18% of the most ne glected areas in ecological research are expected to experience severe climate or land use changes by 2050. This means that unless we take immediate action, we will not be able to establish their current status, much less monitor how it is changing and what is being lostinfo:eu-repo/semantics/publishedVersio

    Pervasive gaps in Amazonian ecological research

    Get PDF
    corecore