4 research outputs found

    Demographic, clinical, and functional determinants of antithrombotic treatment in patients with nonvalvular atrial fibrillation

    Get PDF
    Altres ajuts: Alliance Bristol-Myers Squibb/Pfizer.Background: This study assessed the sociodemographic, functional, and clinical determinants of antithrombotic treatment in patients with nonvalvular atrial fibrillation (NVAF) attended in the internal medicine setting. Methods: A multicenter, cross-sectional study was conducted in NVAF patients who attended internal medicine departments for either a routine visit (outpatients) or hospitalization (inpatients). Results: A total of 961 patients were evaluated. Their antithrombotic management included: no treatment (4.7%), vitamin K antagonists (VKAs) (59.6%), direct oral anticoagulants (DOACs) (21.6%), antiplatelets (6.6%), and antiplatelets plus anticoagulants (7.5%). Permanent NVAF and congestive heart failure were associated with preferential use of oral anticoagulation over antiplatelets, while intermediate-to high-mortality risk according to the PROFUND index was associated with a higher likelihood of using antiplatelet therapy instead of oral anticoagulation. Longer disease duration and institutionalization were identified as determinants of VKA use over DOACs. Female gender, higher education, and having suffered a stroke determined a preferential use of DOACs. Conclusions: This real-world study showed that most elderly NVAF patients received oral anticoagulation, mainly VKAs, while DOACs remained underused. Antiplatelets were still offered to a proportion of patients. Longer duration of NVAF and institutionalization were identified as determinants of VKA use over DOACs. A poor prognosis according to the PROFUND index was identified as a factor preventing the use of oral anticoagulation

    Pre-extinction Demographic Stability and Genomic Signatures of Adaptation in the Woolly Rhinoceros

    Get PDF
    Ancient DNA has significantly improved our understanding of the evolution and population history of extinct megafauna. However, few studies have used complete ancient genomes to examine species responses to climate change prior to extinction. The woolly rhinoceros (Coelodonta antiquitatis) was a cold-adapted megaherbivore widely distributed across northern Eurasia during the Late Pleistocene and became extinct approximately 14 thousand years before present (ka BP). While humans and climate change have been proposed as potential causes of extinction [1-3], knowledge is limited on how the woolly rhinoceros was impacted by human arrival and climatic fluctuations [2]. Here, we use one complete nuclear genome and 14 mitogenomes to investigate the demographic history of woolly rhinoceros leading up to its extinction. Unlike other northern megafauna, the effective population size of woolly rhinoceros likely increased at 29.7 ka BP and subsequently remained stable until close to the species’ extinction. Analysis of the nuclear genome from a similar to 18.5-ka-old specimen did not indicate any increased inbreeding or reduced genetic diversity, suggesting that the population size remained steady for more than 13 ka following the arrival of humans [4]. The population contraction leading to extinction of the woolly rhinoceros may have thus been sudden and mostly driven by rapid warming in the Bolling-Allerod interstadial. Furthermore, we identify woolly rhinoceros-specific adaptations to arctic climate, similar to those of the woolly mammoth. This study highlights how species respond differently to climatic fluctuations and further illustrates the potential of palaeogenomics to study the evolutionary history of extinct species

    Pseudomonas aeruginosa antibiotic susceptibility profiles, genomic epidemiology and resistance mechanisms: a nation-wide five-year time lapse analysisResearch in context

    No full text
    Summary: Background: Pseudomonas aeruginosa healthcare-associated infections are one of the top antimicrobial resistance threats world-wide. In order to analyze the current trends, we performed a Spanish nation-wide high-resolution analysis of the susceptibility profiles, the genomic epidemiology and the resistome of P. aeruginosa over a five-year time lapse. Methods: A total of 3.180 nonduplicated P. aeruginosa clinical isolates from two Spanish nation-wide surveys performed in October 2017 and 2022 were analyzed. MICs of 13 antipseudomonals were determined by ISO-EUCAST. Multidrug resistance (MDR)/extensively drug resistance (XDR)/difficult to treat resistance (DTR)/pandrug resistance (PDR) profiles were defined following established criteria. All XDR/DTR isolates were subjected to whole genome sequencing (WGS). Findings: A decrease in resistance to all tested antibiotics, including older and newer antimicrobials, was observed in 2022 vs 2017. Likewise, a major reduction of XDR (15.2% vs 5.9%) and DTR (4.2 vs 2.1%) profiles was evidenced, and even more patent among ICU isolates [XDR (26.0% vs 6.0%) and DTR (8.9% vs 2.6%)] (p < 0.001). The prevalence of Extended-spectrum β-lactamase/carbapenemase production was slightly lower in 2022 (2.1%. vs 3.1%, p = 0.064). However, there was a significant increase in the proportion of carbapenemase production among carbapenem-resistant strains (29.4% vs 18.1%, p = 0.0246). While ST175 was still the most frequent clone among XDR, a slight reduction in its prevalence was noted (35.9% vs 45.5%, p = 0.106) as opposed to ST235 which increased significantly (24.3% vs 12.3%, p = 0.0062). Interpretation: While the generalized decrease in P. aeruginosa resistance, linked to a major reduction in the prevalence of XDR strains, is encouraging, the negative counterpart is the increase in the proportion of XDR strains producing carbapenemases, associated to the significant advance of the concerning world-wide disseminated hypervirulent high-risk clone ST235. Continued high-resolution surveillance, integrating phenotypic and genomic data, is necessary for understanding resistance trends and analyzing the impact of national plans on antimicrobial resistance. Funding: MSD and the Instituto de Salud Carlos III, Ministerio de Ciencia e Innovación and Unión Europea—NextGenerationEU
    corecore