53 research outputs found

    Photometric Properties of Six Local Volume Dwarf Galaxies from Deep Near-Infrared Observations

    Full text link
    We have obtained deep near-infrared JJ- (1.25 μ\mum), HH- (1.65μ \mum) and KsK_s-band (2.15 μ\mum) imaging for a sample of six dwarf galaxies (M_B\ga-17 mag) in the Local Volume (LV, D\la10 Mpc). The sample consists mainly of early-type dwarf galaxies found in various environments in the LV. Two galaxies (LEDA 166099 and UGCA 200) in the sample are detected in the near-infrared for the first time. The deep near-infrared images allow for a detailed study of the photometric and structural properties of each galaxy. The surface brightness profiles of the galaxies are detected down to the ~24magarcsec224 mag arcsec^{-2} isophote in the JJ- and HH-bands, and 23magarcsec223 mag arcsec^{-2} in the KsK_s-band. The total magnitudes of the galaxies are derived in the three wavelength bands. For the brightest galaxies (M_B\la-15.5 mag) in the sample, we find that the Two Micron All Sky Survey (2MASS) underestimates the total magnitudes of these systems by up to \la0.5 mag. The radial surface brightness profiles of the galaxies are fitted with an exponential (for those galaxies having a stellar disk) or S\'ersic law to derive the structure of the underlying stellar component. In particular, the effective surface brightness (μe\mu_e) and effective radius (rer_e) are determined from the analytic fits to the surface brightness profile. The JJ-KsK_s colours for the galaxies have been measured to explore the luminosity-metallicity relation for early-type dwarfs. In addition, the BB-KsK_s colours of the galaxies are used to assess their evolutionary state relative to other galaxy morphologies. The total stellar masses of the dwarf galaxies are derived from the HH-band photometric measurements. These will later be compared to the dynamical mass estimates for the galaxies to determine their dark matter content.Comment: 14 pages, 8 figures, submitted to MNRA

    Unveiling the structure of barred galaxies at 3.6 mu;m with the spitzer survey of stellar structure in galaxies (S4G). I. Disk breaks

    Get PDF
    We have performed two-dimensional multicomponent decomposition of 144 local barred spiral galaxies using 3.6 &mu;m images from the Spitzer Survey of Stellar Structure in Galaxies. Our model fit includes up to four components (bulge, disk, bar, and a point source) and, most importantly, takes into account disk breaks. We find that ignoring the disk break and using a single disk scale length in the model fit for Type II (down-bending) disk galaxies can lead to differences of 40% in the disk scale length, 10% in bulge-to-total luminosity ratio (B/T), and 25% in bar-to-total luminosity ratios. We find that for galaxies with B/T &ge; 0.1, the break radius to bar radius, r bar, varies between 1 and 3, but as a function of B/T the ratio remains roughly constant. This suggests that in bulge-dominated galaxies the disk break is likely related to the outer Lindblad resonance of the bar and thus moves outward as the bar grows. For galaxies with small bulges, B/T &lt; 0.1, r bar spans a wide range from 1 to 6. This suggests that the mechanism that produces the break in these galaxies may be different from that in galaxies with more massive bulges. Consistent with previous studies, we conclude that disk breaks in galaxies with small bulges may originate from bar resonances that may be also coupled with the spiral arms, or be related to star formation thresholds. &copy; 2014. The American Astronomical Society. All rights reserved. &copy; 2014. The American Astronomical Society. All rights reserved. Printed in the U.S.A.</p

    How close can an Inhomogeneous Universe mimic the Concordance Model?

    Full text link
    Recently, spatially inhomogeneous cosmological models have been proposed as an alternative to the LCDM model, with the aim of reproducing the late time dynamics of the Universe without introducing a cosmological constant or dark energy. This paper investigates the possibility of distinguishing such models from the standard LCDM using background or large scale structure data. It also illustrates and emphasizes the necessity of testing the Copernican principle in order to confront the tests of general relativity with the large scale structure.Comment: 15 pages, 7 figure

    Revival of the magnetar PSR J1622-4950: observations with MeerKAT, Parkes, XMM-Newton, Swift, Chandra, and NuSTAR

    Get PDF
    New radio (MeerKAT and Parkes) and X-ray (XMM-Newton, Swift, Chandra, and NuSTAR) observations of PSR J1622-4950 indicate that the magnetar, in a quiescent state since at least early 2015, reactivated between 2017 March 19 and April 5. The radio flux density, while variable, is approximately 100x larger than during its dormant state. The X-ray flux one month after reactivation was at least 800x larger than during quiescence, and has been decaying exponentially on a 111+/-19 day timescale. This high-flux state, together with a radio-derived rotational ephemeris, enabled for the first time the detection of X-ray pulsations for this magnetar. At 5%, the 0.3-6 keV pulsed fraction is comparable to the smallest observed for magnetars. The overall pulsar geometry inferred from polarized radio emission appears to be broadly consistent with that determined 6-8 years earlier. However, rotating vector model fits suggest that we are now seeing radio emission from a different location in the magnetosphere than previously. This indicates a novel way in which radio emission from magnetars can differ from that of ordinary pulsars. The torque on the neutron star is varying rapidly and unsteadily, as is common for magnetars following outburst, having changed by a factor of 7 within six months of reactivation.Comment: Published in ApJ (2018 April 5); 13 pages, 4 figure

    Chronic and structural poverty in South Africa: Challenges for action and research

    Get PDF
    Ten years after liberation, the persistence of poverty is one of the most important and urgent problems facing South Africa. This paper reflects on some of the findings based on research undertaken as part of the participation of the Programme for Land and Agrarian Studies (PLAAS) at the University of the Western Cape in the work of the Chronic Poverty Research Centre (CPRC), situates it within the broader literature on poverty in South Africa, and considers some emergent challenges. Although PLAAS’s survey, being only the first wave of a panel study, does not yet cast light on short term poverty dynamics, it illuminates key aspects of the structural conditions that underpin long-term poverty: the close interactions between asset poverty, employment-vulnerability and subjection to unequal social power relations. Coming to grips with these dynamics requires going beyond the limitations of conventional ‘sustainable livelihoods’ analyses; and functionalist analyses of South African labour markets. The paper argues for a re-engagement with the traditions of critical sociology, anthropology and the theoretical conventions that allow a closer exploration of the political economy of chronic poverty at micro and macro level

    Global patient outcomes after elective surgery: prospective cohort study in 27 low-, middle- and high-income countries.

    Get PDF
    BACKGROUND: As global initiatives increase patient access to surgical treatments, there remains a need to understand the adverse effects of surgery and define appropriate levels of perioperative care. METHODS: We designed a prospective international 7-day cohort study of outcomes following elective adult inpatient surgery in 27 countries. The primary outcome was in-hospital complications. Secondary outcomes were death following a complication (failure to rescue) and death in hospital. Process measures were admission to critical care immediately after surgery or to treat a complication and duration of hospital stay. A single definition of critical care was used for all countries. RESULTS: A total of 474 hospitals in 19 high-, 7 middle- and 1 low-income country were included in the primary analysis. Data included 44 814 patients with a median hospital stay of 4 (range 2-7) days. A total of 7508 patients (16.8%) developed one or more postoperative complication and 207 died (0.5%). The overall mortality among patients who developed complications was 2.8%. Mortality following complications ranged from 2.4% for pulmonary embolism to 43.9% for cardiac arrest. A total of 4360 (9.7%) patients were admitted to a critical care unit as routine immediately after surgery, of whom 2198 (50.4%) developed a complication, with 105 (2.4%) deaths. A total of 1233 patients (16.4%) were admitted to a critical care unit to treat complications, with 119 (9.7%) deaths. Despite lower baseline risk, outcomes were similar in low- and middle-income compared with high-income countries. CONCLUSIONS: Poor patient outcomes are common after inpatient surgery. Global initiatives to increase access to surgical treatments should also address the need for safe perioperative care. STUDY REGISTRATION: ISRCTN5181700

    Revival of the Magnetar PSR J1622-4950: Observations with MeerKAT, Parkes, XMM-Newton, Swift, Chandra, and NuSTAR

    Get PDF
    New radio (MeerKAT and Parkes) and X-ray (XMM-Newton, Swift, Chandra, and NuSTAR) observations of PSR J1622-4950 indicate that the magnetar, in a quiescent state since at least early 2015, reactivated between 2017 March 19 and April 5. The radio flux density, while variable, is approximately 100 larger than during its dormant state. The X-ray flux one month after reactivation was at least 800 larger than during quiescence, and has been decaying exponentially on a 111 19 day timescale. This high-flux state, together with a radio-derived rotational ephemeris, enabled for the first time the detection of X-ray pulsations for this magnetar. At 5%, the 0.3-6 keV pulsed fraction is comparable to the smallest observed for magnetars. The overall pulsar geometry inferred from polarized radio emission appears to be broadly consistent with that determined 6-8 years earlier. However, rotating vector model fits suggest that we are now seeing radio emission from a different location in the magnetosphere than previously. This indicates a novel way in which radio emission from magnetars can differ from that of ordinary pulsars. The torque on the neutron star is varying rapidly and unsteadily, as is common for magnetars following outburst, having changed by a factor of 7 within six months of reactivation
    corecore