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Abstract

New radio (MeerKAT and Parkes) and X-ray (XMM-Newton, Swift, Chandra, and NuSTAR) observations of
PSRJ1622–4950 indicate that the magnetar, in a quiescent state since at least early 2015, reactivated between 2017
March 19 and April 5. The radio flux density, while variable, is approximately 100× larger than during its dormant
state. The X-ray flux one month after reactivation was at least 800× larger than during quiescence, and has been
decaying exponentially on a 111±19 day timescale. This high-flux state, together with a radio-derived rotational
ephemeris, enabled for the first time the detection of X-ray pulsations for this magnetar. At 5%, the 0.3–6 keV
pulsed fraction is comparable to the smallest observed for magnetars. The overall pulsar geometry inferred from
polarized radio emission appears to be broadly consistent with that determined 6–8 years earlier. However, rotating
vector model fits suggest that we are now seeing radio emission from a different location in the magnetosphere than
previously. This indicates a novel way in which radio emission from magnetars can differ from that of ordinary
pulsars. The torque on the neutron star is varying rapidly and unsteadily, as is common for magnetars following
outburst, having changed by a factor of 7 within six months of reactivation.

Key words: pulsars: general – pulsars: individual (PSR J1622–4950) – stars: magnetars – stars: neutron

1. Introduction

Magnetars are the most magnetic objects known in the
universe: a class of neutron stars with high-energy emission
powered by the decay of ultra-strong magnetic fields, rather
than through rotation (Thompson & Duncan 1995). This is
particularly manifest during large X-ray outbursts, when their
luminosity exceeds that available from rotational spin down.
The remarkable magnetar phenomenon provides a unique
window into the behavior of matter at extreme energy densities.
Although all confirmed magnetars spin slowly (≈1–10 s), it has
been suggested that soon after birth, while spinning at
millisecond periods, they could be responsible for some
gamma ray bursts (e.g., Beniamini et al. 2017) or possibly
fast radio bursts (e.g., Metzger et al. 2017).

Observations of both magnetars and rotation-powered
pulsars are also uncovering links between the two populations.
Camilo et al. (2006) discovered that magnetars can emit radio
pulsations. Magnetar radio properties are often distinct from
those of ordinary rotation-powered pulsars, e.g., in having flat
radio spectra (e.g., Camilo et al. 2007b). On the other hand,
while radio magnetars have highly variable pulse profiles,
rotating vector model (RVM; Radhakrishnan & Cooke 1969)
fits to polarimetric observations often yield unexpectedly good
results that suggest a magnetic field geometry at the location of
emission not unlike that of ordinary pulsars (e.g., Camilo et al.
2008, but see also Kramer et al. 2007). Conversely, distinct
magnetar-like outbursts, including short X-ray bursts and long-
duration X-ray flux enhancements, have now been observed
from two pulsars formerly classified as entirely rotation
powered (Gavriil et al. 2008; Archibald et al. 2016).

Thus, more neutron stars that occasionally display magnetar
behavior surely lurk amidst the≈2500 known “ordinary” pulsars.
All the while, careful study of the rotational and radiative
behavior of the two dozen confirmed magnetars (Olausen &
Kaspi 2014),30 coupled with remarkable theoretical progress,
continues to advance our understanding of these exceptional
objects (for a recent review, see Kaspi & Beloborodov 2017).

Only four magnetars are known to emit radio pulsations. The
first to be identified, XTEJ1810−197, remained an active
radio source for approximately five years following the X-ray
outburst that resulted in its discovery, and has been radio-
dormant since, for nine years, while X-ray activity continues at
a relatively low level (Camilo et al. 2016). Two others,

1E1547.0−5408 and SGR1745−2900, have remained very
active radio and high-energy sources (e.g., Lynch et al. 2015;
Coti Zelati et al. 2017; Mahrous 2017, and references therein).
PSRJ1622–4950, with rotation period P=4.3 s, remains the

only magnetar discovered at radio wavelengths without prior
knowledge of an X-ray counterpart (Levin et al. 2010). At the
time of discovery, its X-ray flux was decaying exponentially
from a presumed outburst in 2007, and no X-ray pulsations could
be detected (Anderson et al. 2012). Detectable radio emission
ceased in 2014 and, despite frequent monitoring, the pulsar
remained undetectable through late 2016 (Scholz et al. 2017).
Here we report on new multi-wavelength observations of

PSRJ1622–4950, showing that the magnetar is once again in a
highly active state. Observations with the CSIRO Parkes
telescope first detected resumed radio emission on 2017 April 5.
Subsequent observations with the new Square Kilometre Array
South Africa (SKA SA) MeerKAT radio telescope have been
tracking the unsteady spin-down torque and, as we describe
here, have enabled the first detection of X-ray pulsations for
this neutron star through the folding of X-ray photons collected
with Chandra and NuSTAR. Further X-ray observations with
XMM-Newton and Swift provide a fuller view of the spectral
evolution of the star following this most recent outburst.

2. Observations

2.1. Parkes

2.1.1. Monitoring

Following the last observation reported in Scholz et al.
(2017), on 2016 September 16, we continued monitoring
PSRJ1622–4950 at the Parkes 64 m radio telescope. As
before, the observations were performed with the PDFB4
digital filterbank in search mode, typically at a central
frequency of 3.1 GHz (recording a bandwidth of 1 GHz), for
≈15 minutes per session.
On 2017 April 26 we noticed during real-time monitoring of

the observations that single pulses were being detected from the
pulsar. Parkes underwent a planned month-long shutdown in
May, and we started monitoring PSRJ1622–4950 with
MeerKAT in late April (Section 2.2.4).

2.1.2. Polarimetry

In order to compare the geometry of PSRJ1622–4950
following its reactivation in 2017 with that before its disappearance
by early 2015, we have made two calibrated polarimetric30 Catalog at http://www.physics.mcgill.ca/~pulsar/magnetar/main.html.
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observations at the Parkes radio telescope, using PDFB4 in fold
mode. These 40minute observations were performed at 1.4 GHz
(with 256MHz bandwidth, on 2017 August 5) and 3.1 GHz
(recording 1024MHz of bandwidth, on August 16), using the
center beam of the 20 cm multibeam receiver and the 10 cm band
of the 1050 cm receiver, respectively.

2.2. MeerKAT

MeerKAT,31 a precursor to the Square Kilometre Array
(SKA), is a radio interferometer being built by SKA South
Africa in the Karoo region of the Northern Cape province, at
approximate coordinates 21°26′ east, 30°42′ south. The full
array, scheduled to start science operations in 2018, will consist
of 64 13.5 m diameter antennas located on baselines of up to
8 km. The observations reported in this paper were obtained
during the commissioning phase and used a subset of the array
and some interim subsystems. As MeerKAT is a new
instrument not yet described in the literature, we provide here
an overview of the system relevant to our results.

2.2.1. Receptors

The MeerKAT dishes are of a highly efficient unshaped “feed
down” offset Gregorian design. This allows the positioning of
four receiver systems on an indexing turret near the subreflector
without compromising the clean optical path. A receptor consists
of the primary reflector and subreflector, the feed horns,
cryogenically cooled receivers and digitizers mounted on the
feed indexer, as well as associated support structures and drive
systems, all mounted on a pedestal. The observations reported
here were performed at L band. Averaged across this
900–1670MHz band, the measured system equivalent flux
density (SEFD) of one receptor on cold sky is ≈460 Jy. UHF
(580–1015MHz) and S-band (1.75–3.5 GHz) receiver systems
are also being built (the latter by MPIfR).

The RF signal from the L-band receiver is transferred via
coaxial cables to the shielded digitizer package ∼1m away. The
digitizer samples the signal directly in the second Nyquist zone
without heterodyne conversion. After RF conditioning and
analog-to-digital conversion, the 10-bit voltage stream from each
of two (horizontal and vertical) polarizations is framed into
4×10 Gbps Ethernet streams. These are concatenated onto a
single 40Gbps stream for transmission via buried optical fiber
cables to the central Karoo Array Processor Building (KAPB)
located <12 km away. The one-pulse-per-second signal that
allows precise time stamping of voltage sample data and the
sample clock frequencies for the analog-to-digital converters
(1712MHz for L band) originate in the Time and Frequency
Reference (TFR) subsystem located in the KAPB. Ultimately,
two hydrogen maser clocks and time-transfer GPS receivers will
allow time stamping to be traceable to within 5 ns of UTC. The
observations presented here made use of an interim TFR system
with GPS-disciplined rubidium clocks, which provides time
stamps accurate to within 1 μs of UTC.

2.2.2. Correlator/Beamformer

The MeerKAT correlator/beamformer (CBF) implements an
FX/B-style real-time signal processor in the KAPB. The
antenna voltage streams are coarsely aligned as necessary to
compensate for geometric and instrumental delays, split into

frequency channels, and then phase aligned per frequency
channel, prior to cross-correlation (X) and/or beamforming
(B). This is done in the “F-engine” processing nodes, where a
polyphase filterbank is used to achieve the required channeliza-
tion with sufficient channel-to-channel isolation.
The CBF subsystem is based on the CASPER technology,

which uses commodity network devices (in the case of
MeerKAT, 40 Gbps Mellanox SX1710 36-port Ethernet switches
arranged in a two-layer CLOS network yielding 384 ports) to
handle digital data transfer and re-ordering between processing
nodes. The switches allow a multicast of data to enable parallel
processing. The processing nodes for the full MeerKAT array
will consist of so-called SKARAB boards populated with
Virtex7 VX690T field-programmable gate arrays (FPGAs).
The interim CBF, used for the observations presented here, uses
the ROACH2 architecture populated with Virtex6 SX475T
FPGAs, and can handle a maximum of 32 inputs, such as two
polarizations for each of 16 antennas.
For pulsar and fast transient applications, a tied-array beam

is formed in the B engines, which perform coherent summation
on previously delayed, channelized, and re-ordered voltage
data. The F and B engines handle both polarizations, but
polarization calibration still has to be implemented for tied-
array mode, and the observations presented here are based on
uncalibrated total-intensity time series.

2.2.3. Pulsar Timing Backend

For all observations presented here, data from a dual
polarization tied-array beam split into 4096 frequency channels
spanning 856MHz of band centered at 1284MHz were sent to
the pulsar timing backend. This instrument is being developed
by the Swinburne University of Technology pulsar group. The
hardware consists of two eight-core servers, each equipped with
four NVIDIA TitanX (Maxwell) GPUs, 128 GB of memory, a
large storage disk, and dual-port 40 Gbps Ethernet interfaces,
through which the beamformed data are received. This allows
the simultaneous processing of up to four tied-array beams,
although at present only one is provided by the B engines.
The beamformed voltage data stream is handled by a

dedicated real-time pipeline. First, the UDP packets are received
and allocated to a PSRDADA32 ring buffer. Next, the data are
asynchronously transferred to the GPUs, dedispersed, detected,
and folded into 1024 phase bins by DSPSR (van Straten &
Bailes 2011) using a TEMPO2 (Hobbs et al. 2006) phase
predictor derived from the pulsar’s ephemeris. Every 10 s, a
folded sub-integration is unloaded from the GPUs to local
storage in PSRFITS format (Hotan et al. 2004) for subsequent
offline analysis. Data acquisition and processing, as well as
control and monitoring of the backend, are handled by SPIP,33 a
C++, PHP and python software framework that combines the
individual software tools mentioned above into a complete
pulsar timing instrument. In the observations presented here, the
data were dedispersed incoherently, although provision exists for
coherent dedispersion.

2.2.4. MeerKAT Observations

We commenced observations of PSRJ1622–4950 with
MeerKAT on 2017 April 27. In a typical session, following

31 http://www.ska.ac.za/gallery/meerkat/

32 http://psrdada.sourceforge.net/
33 http://github.com/ajameson/spip/
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successful array configuration we observed the calibrator
PKS1934−638, in order to derive and apply the phase-delay
corrections.

Since the phase stability of the array is still being
investigated, on each day we typically did three 20 minute
magnetar observations interspersed with observations of
PKS1934−638. From April 27 to October 3 (a span of
159 days) we obtained a total of 231 such observations on
74 separate days. On average these used 14.4 antennas
(on a variety of baselines dependent on availability). This
corresponds to a cold-sky tied-array SEFD ≈32 Jy, which is
comparable to the equivalent Parkes telescope SEFD at L band
(e.g., Manchester et al. 2001).

We preceded the magnetar observations on each day by a
five minute track on PSRJ1644−4559 (P=0.45 s, dispersion
measure DM=478 cm−3 pc), a bright pulsar with a known
timing solution, to serve as a timing calibrator.

2.3. XMM-Newton

The XMM-Newton X-ray telescope (Jansen et al. 2001)
observed PSRJ1622–4950 on 2017 March 19 for a total of
125 ks. During the observation the EPIC (European Photon
Imaging Camera) pn camera (Strüder et al. 2001) was operated
in Full Frame mode, while the EPIC MOS cameras (Turner
et al. 2001) were operated in Small Window mode. The EPIC
detectors are sensitive to energies of 0.15–15 keV.

Standard XMM-Newton data reduction threads were used34 to
process the data using the Science Analysis Software (SAS)
version 16. After removing the effects of soft proton flares, the
usable live time was 102 ks. We used a circular source extraction
region with radius 18″ centered on the pulsar, and the background
was estimated from a circular source-free region of radius 72″.

2.4. Swift

Three observations of PSRJ1622–4950 were made with the
Swift X-ray Telescope (XRT; Burrows et al. 2005) between 2017
April 27 and May 5. The first observation was made in Photon
Counting (PC) mode, while the others were made in Windowed
Timing (WT) mode. PC mode gives two-dimensional imaging
capabilities at 2.5 s resolution, while WT provides only one
spatial dimension but at a higher time resolution of 1.7 ms. More
observational details are given in Table 1.

The observations were analyzed by running the standard XRT
data reduction pipeline xrtpipeline on the pulsar position
(see Table 2). For the PC mode observation, the source region

was a circle of radius 20 pixels (0 78) centered on the pulsar,
while the background region was an annulus with an inner radius
of 40 pixels and an outer radius of 60 pixels centered on the
pulsar. For WT mode observations, the source regions were
40-pixel strips centered on the pulsar, and the background
regions were 40-pixel strips placed away from the pulsar.

2.5. Chandra

The Chandra X-ray Observatory (Weisskopf et al. 2000)
observed PSRJ1622–4950on 2017 May 8 and 23, and
September 3, using the ACIS-S (Garmire et al. 2003) spectro-
meter (see Table 1). All observations were made in Continuous
Clocking (CC) mode. CC mode foregoes two-dimensional
imaging to provide 2.85 ms time resolution.
The Chandra Interactive Analysis of Observations software

(CIAO; Fruscione et al. 2006) was used to reduce the data. The
data, downloaded from the Chandra Data Archive (CHASER35),
were first reprocessed using the script chandra_repro, and
then the appropriate science thread was followed.36 Spectra were
extracted using an 8-pixel (8″) strip centered on the pulsar. The
background region was a 32-pixel strip placed away from the
pulsar. Photon arrival times were corrected to the solar system
barycenter using the pulsar position.

2.6. NuSTAR

PSRJ1622–4950 was observed with NuSTAR (Nuclear
Spectroscopic Telescope Array; Harrison et al. 2013) on
2017 May 7 and 25, and August 30 (see Table 1). These
observations were coordinated with Chandra (see Section 2.5),
in order to probe the pulsar over a broad energy range.
The data were processed using the standard HEASOFT tools

nupipeline and nuproducts, following the NuSTAR
Quickstart Guide.37 Spectra from both Focal Plane Modules
(FPMA and FPMB) were fit jointly during the analysis. Source
regions were chosen to be circles with radii of 20 pixels (8′)
centered on the pulsar. Background regions were circles of the
same radius, but placed away from the pulsar. Event arrival
times were corrected to the solar system barycenter using the
pulsar position.

Table 1
X-Ray Observations of PSRJ1622–4950 since Its 2017 Outburst

Telescope Energy ObsID Date Start Time Exposure Time
(keV) (YYYY-Month-DD) (MJD) (ks)

Swift 0.2–10 00010071001 2017 Apr 27 57870.7 2.5
Swift 0.2–10 00010071002 2017 May 01 57874.7 5.0
Swift 0.2–10 00010071003 2017 May 05 57878.7 1.7
NuSTAR 3–79 80202051002 2017 May 07 57880.9 52.6
Chandra 0.3–10 19214 2017 May 08 57881.8 10.1
Chandra 0.3–10 19215 2017 May 23 57896.2 15.0
NuSTAR 3–79 80202051004 2017 May 25 57898.5 69.5
NuSTAR 3–79 80202051006 2017 Aug 30 57995.1 124.9
Chandra 0.3–10 19216 2017 Sep 03 57999.4 25.0

34 https://www.cosmos.esa.int/web/xmm-newton/sas-threads/

35 http://cda.harvard.edu/chaser/
36 http://cxc.harvard.edu/ciao/threads/pointlike/
37 https://heasarc.gsfc.nasa.gov/docs/nustar/analysis/nustar_quickstart_
guide.pdf
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3. Analysis and Results

3.1. Radio Reactivation

After recognizing on 2017 April 26 that PSRJ1622–4950
was emitting radio waves, we inspected the previously acquired
Parkes monitoring data (Section 2.1.1). Data collected on April
5 showed that the pulsar had turned on (see Figure 1(a)). Our
only other prior unpublished Parkes monitoring observations,
from 2016 November 17 and 2017 January 14, show no
evidence of pulsations, with a 5σ flux density limit of ≈0.3 mJy
at 3 GHz (see Scholz et al. 2017).

3.2. Polarimetry

The fold-mode data on PSRJ1622–4950 collected with
PDFB4 in 2017 (Section 2.1.2) were analyzed with PSRCHIVE
(Hotan et al. 2004) as in, e.g., Camilo et al. (2007c). The
individually determined rotation measures (RMs) are essentially
consistent with the value published in Levin et al. (2010), and the
calibrated pulse profiles are shown in Figure 2. The period-
averaged flux densities for these two observations (which are the
only flux-calibrated radio observations presented in this paper)
are S1.4=63±6mJy and S3=32±3mJy, respectively.

Figure 1. Radio pulse profiles of PSRJ1622–4950. (a) Parkes at 3.1 GHz
(bandwidth BW=1 GHz) on 2017 April 5. (b) MeerKAT at 1.3 GHz (RFI-
free BW≈500 MHz) on April 27. (c) Parkes at 3.1 GHz (BW=1 GHz) on
July 4. (d) Parkes at 1.4 GHz (BW=256 MHz) on June 7. All profiles are
displayed (in arbitrary units) as a function of time and summed at the top,
repeated twice. The baselines of the profiles in panels (c) and (d) are affected by
instrumental artifacts.

Figure 2. Calibrated full-Stokes profiles of PSRJ1622–4950 based on Parkes
observations. The red and blue lines represent the amount of linear and circular
polarization, respectively, and the black traces show total intensity. The
position angles (PAs) of linear polarization have been corrected for rotation
measure RM=−1495±5 rad m−2 and are plotted de-rotated to infinite
frequency. The profiles, from 2017 August 5 (panel (b)) and August 16 (panel
(a)), are aligned by eye.
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3.3. Radio Timing

The MeerKAT observations (Section 2.2.4) were used to
obtain timing solutions for two purposes: to fold the Chandra
and NuSTAR X-ray photons, and to probe the short-term
variability of the spin-down torque on the neutron star.

All MeerKAT observations were processed in a homo-
geneous way using PSRCHIVE. The first few days of Parkes
and MeerKAT observations (see Figure 1(b)) were used to
improve the rotational ephemeris thereafter used to fold all
MeerKAT observations.

Radio frequency interference (RFI) was excised in a multi-
step process: first, 10% of the recorded band was removed due
to bandpass roll-off, yielding the nominal 900–1670MHz
MeerKAT L band; next, a mask with known persistent RFI
signals (e.g., GSM, GPS) was applied to the data; finally,
PSRCHIVE tools and clean.py, an RFI-excision script
provided by the CoastGuard data analysis pipeline (Lazarus
et al. 2016), were used to remove remaining RFI. More than
400MHz of clean band was typically retained after this
flagging.

We summed all frequency channels, integrations, and
polarizations for each observation to obtain total-intensity
profiles. We then obtained times-of-arrival (TOAs) for each

observation (i.e., two or three per day) by cross-correlating
individual profiles with a standard template based on a very
high signal-to-noise ratio observation.
The same procedure was applied to MeerKAT observations

of PSRJ1644−4559. Using the TEMPO software we con-
firmed that the timing solution derived for PSRJ1644−4559
was consistent with published parameters (see Manchester
et al. 2005).
Like many magnetars, PSRJ1622–4950 displays unsteady

rotation (e.g., Dib & Kaspi 2014). Nevertheless, we were able
to obtain a simple phase-connected timing solution for the
three week period spanning the first two sets of paired Chandra
and NuSTAR observations (Table 1), fitting the TOAs with
TEMPO to a model containing only pulse phase, rotation
frequency (ν), and frequency derivative (ṅ). This solution is
presented in Table 2.
Over the five month span of all the radio timing observations

presented here, the ṅ for PSRJ1622–4950 changed by a factor
of 7, and n ̈ changed sign. In order to probe the evolution of the
spin-down torque ( nµ ˙ ), we fit short-term overlapping timing
models where a fit for ν and ṅ proves adequate, i.e., with
featureless timing residuals. Each of these short-term timing
solutions spanned approximately one week. Figure 3 shows the
run of ṅ from these solutions spanning five months.

3.4. Pre-outburst XMM-Newton Limit

In the 2017 March 19 XMM-Newton observation, performed
before the April 5 observation that detected resumed radio
activity from PSRJ1622–4950, we detect no X-ray counts in
excess of the background rate. Using the Bayesian method of
Kraft et al. (1991), we place an upper limit of 0.002 s−1 on the
background-subtracted EPIC-pn 0.3–10 keV count-rate at a 5σ
confidence level. (We use only the pn data to place an upper
limit as the MOS detectors are much less sensitive.) For this
limit, WebPIMMS gives a 0.3–10 keV absorbed flux limit of
9×10−15 erg cm−2 s−1, assuming an absorbed blackbody
(BB) spectrum with kT= 0.4 keV (typical of a quiescent
magnetar; Olausen et al. 2013) and NH=6.4×1022 cm−2

(see Section 3.6). The corresponding 5σ unabsorbed flux limit
is 8×10−14 erg cm−2 s−1.

Table 2
PSRJ1622–4950 Ephemeris Used to Fold the X-Ray Data

Parameter Value

R.A. (J2000)a 16 22 44. 89h m s

Decl. (J2000)a −49°50′52 7
Spin frequency, ν (s−1) 0.231090389(2)
Frequency derivative, s 2n -˙ ( ) −7.94(2)×10−13

Epoch of frequency (MJD TDB) 57881
Data span (MJD) 57880–57903
Number of TOAs 59
rms residual (phase) 0.005

Derived Parameters

Spin-down luminosity, Ė (erg s−1) 7.2×1033

Surface dipolar magnetic field, B (G) 2.6 1014´
Characteristic age, τc (kyr) 4.6

Note. Numbers in parentheses are TEMPO 1σ uncertainties.
a Values fixed to those from Anderson et al. (2012).

Figure 3. Time evolution of properties of PSRJ1622–4950. Top panel:
frequency derivative measured from short-term timing solutions (spanning
horizontal error bars) obtained from MeerKAT data (see Section 3.3). Bottom
panel: 0.3–10 keV absorbed X-ray flux as measured from the best-fit blackbody
model (see Table 3). Swift observations are shown as open squares and
combined Chandra and NuSTAR observations are represented simply by their
error bars. The X-ray flux appears to be decaying exponentially with a time
constant of 111±19 days (see Section 4.4). All error bars represent 1σ
confidence levels. The gray band in both panels represents the timespan during
which the X-ray outburst and radio revival most likely occurred (see Section 4).
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3.5. X-Ray Pulsations

We have used the radio-derived rotational ephemeris
presented in Table 2 to fold barycentered photons from the
first two sets of paired Chandra and NuSTAR observations, and
we clearly detect pulsations (Figure 4). To maximize the
significance of the detected pulsations, we optimize the energy
range that maximizes the H statistic of the pulse (De Jager
et al. 1989). For Chandra we find the optimal range to be
0.3–6.0 keV, with a false alarm probability, given the
maximum value of the H statistic, of Pfa=2×10−5

(equivalent to a 4.3σ detection). For NuSTAR we find the
optimal range to be 2.0–8.0 keV (Pfa=1×10−7; 5.3σ). We
also present a combined Chandra and NuSTAR 0.3–8 keV
profile which shows a strong pulse (Pfa=5×10−12; 6.9σ).
Note, however, that NuSTAR is not sensitive to X-ray photons
below ∼2 keV. This is the first detection of X-ray pulses from
PSRJ1622–4950. The pulsed fraction (PF) of the 0.3–6 keV
Chandra profile is PF=5%±1% (using the rms method
described in An et al. 2015, Appendix A, where PF errors are
reported at the 1σ level). For the 2–8 keV NuSTAR pulsations,
PF=4.1%±0.7%. This is far below the 3σ upper limit of
PF<70% at 0.3–4 keV determined by Anderson et al. (2012).

To probe for PF variability, we also measured the pulsed
fraction in each individual Chandra and NuSTAR observation.
As above, for the first two Chandra and NuSTAR epochs we
folded each observation using the ephemeris in Table 2: each
individual-epoch, single-telescope pulsed detection is signifi-
cant at the ≈3σ level. This ephemeris is not valid for the third
Chandra and NuSTAR epochs, nor could we obtain one phase-
connected timing solution that spans all three epochs. We
folded those photons with the ephemeris corresponding to the
relevant frequency derivative measurement presented in
Figure 3 (ν=0.23107824(1) s−1, 7.8 5 10 13n = - ´ -˙ ( ) s−2

at an epoch of MJD57994). The third NuSTAR observation
yielded a 3.1σ pulsed detection, while the third Chandra
observation did not result in a significant detection. The
corresponding PFs, in chronological order, are 3%±1%,
4%±1%, and 4%±1% at 2–8 keV for the NuSTAR
observations, and 4%±2%, 5%±2%, and <10% (3σ) at
0.3–6 keV for the Chandraobservations. Thus, we do not find
significant PF evolution within the 120 days probed by our
measurements.

3.6. Spectral Analysis

The Swift, Chandra, and NuSTAR spectra were fit with
XSPEC.38 We fit several photoelectrically absorbed models
using Tuebingen–Boulder absorption (tbabs in XSPEC;
Wilms et al. 2000) and Cash (1979) statistics. The abundances
from Wilms et al. (2000) and the photoelectric cross sections
from Verner et al. (1996) were used. We treated each pair of
closely spaced Chandra and NuSTAR observations as a single
data set in the spectral fitting. We first fit the Swift and
Chandra+NuSTAR spectra with individual BB and power-law
(PL) models. The low count rate prohibited resolving separate
model components in the Swift observations, and we fit a BB
+PL model to only the Chandra+NuSTAR data sets. In each of
the fits, the absorbing hydrogen column density NH was
constrained to have the same value across all epochs, but the
BB temperature kT and photon index Γ were allowed to vary
from epoch to epoch. All three models provided acceptable fits,
with a reduced χ2 value of 0.97 for the BB model, 0.99 for PL,
and 0.92 for BB+PL. Since the single-component models
produced acceptable fits, which were not significantly
improved by the addition of the extra component, we do not
present the BB+PL model. Additionally, the PL model yields
Γ=5 for all observations (with uncertainties ranging
from 0.04 to 0.4), which is large for a magnetar. The NH=
(1.66±0.02)×1023 cm−2 for that model is large, and is
likely the result of the fitted absorption compensating for the
model’s soft X-ray flux that is not intrinsic to the source. This
NH would also be an outlier to the empirical DM–NH relation of
He et al. (2013). By contrast, the BB model yields NH=
(6.4±0.1)×1022 cm−2, which fits this relationship, and the
kT values (see Table 3) are much more typical of a magnetar in
outburst. We therefore conclude that the BB model provides
the best description of the spectra. The results of the BB
spectral fits are summarized in Table 3, and Figure 3 shows the
time evolution of the absorbed X-ray flux.
As is evident from our spectral fits, which require no

additional PL component, we detect very little emission above
10 keV. We probed for a hard PL component by searching for
an excess of counts above 15 keV in the first NuSTAR

Figure 4. X-ray pulse profiles of PSRJ1622–4950. Data from the first two sets
of paired Chandra and NuSTAR observations were folded with the ephemeris
from Table 2 (see Section 3.5). The top two panels show individual instrument
profiles in the noted energy ranges. The bottom panel shows the overall
combined profile.

38 https://heasarc.gsfc.nasa.gov/xanadu/xspec/
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observation when the source was brightest. We find that the
number of counts is consistent with the background and place a
5σ limit on the 15–60 keV count rate of 0.002 s−1 (we choose
this energy range to be consistent with the literature; e.g., Enoto
et al. 2017). This implies an absorbed 15–60 keV flux limit
of 9×10−13 erg cm−2 s−1, using the measured NH=6.4×
1022 cm−2 and assuming a PL index of Γ=1, typical for the
hard X-ray component of magnetars (e.g., An et al. 2013;
Vogel et al. 2014).

A trend of decreasing X-ray flux is evident from the
observations made thus far (see Figure 3). The peak absorbed
flux values are ≈800× greater than the XMM-Newtonlimit on
2017 March 19 (Section 3.4). This enormous increase in flux
shows that PSRJ1622–4950 has recently gone into a phase of
X-ray outburst. So far, the BB temperature kT is consistent with
being constant.

4. Discussion

After being dormant for 2–3 years, PSRJ1622–4950
resumed radio emission between 2017 January 14 and April 5
(Section 3.1). In turn, its X-ray flux increased by a factor of at
least 800 between 2017 March 19 and April 27 (Section 3.4
and Table 3). Transient radio emission from magnetars has
been shown to be associated with X-ray outbursts (e.g., Camilo
et al. 2007a; Halpern et al. 2008). The most recent outburst of
PSRJ1622–4950therefore most likely happened between
2017 March 19 and April 5. This provides the opportunity to
study the behavior of this magnetar soon after outburst, and
compare it to that previously observed as well as with that of
other magnetars.

4.1. Radio Variability and Outburst History

The previous X-ray outburst of PSRJ1622–4950 is thought
to have occurred in the first half of 2007 (Anderson et al. 2012),
and radio emission following that outburst (retrospectively
detected in 2008, following the discovery of the magnetar in
2009; Anderson et al. 2012) became undetectable in 2015
(Scholz et al. 2017). The outburst history prior to 2007 is not as
well constrained, but on the basis of the radio behavior it is
consistent with an outburst having occurred in or before 1999,
and radio emission becoming undetectable no earlier than 2004
(see Scholz et al. 2017, particularly their Figure 3).

Following the 2007 outburst, the radio pulse profiles of
PSRJ1622–4950displayed great variability, covering up to
60% of pulse phase (Levin et al. 2010, 2012). In 2017, the
observed profiles display variability (see Figures 1(a) and (c)),

although not yet as great or covering such a large range of
rotational phase (Figures 1 and 2). Also, most of our radio
profiles in 2017 are from MeerKAT at 0.9–1.7 GHz, and at low
frequencies the noticeably scatter-broadened profiles (compare
Figures 1(b) and (d)) mask smaller variability.
The 3 GHz flux density measured in 2017, 32 mJy

(Figure 2(a) and Section 3.2), is 100× larger than the S3≈
0.3 mJy limits during 2015–2016 (Scholz et al. 2017) and early
2017 (Section 3.1). While the flux densities for radio magnetars
are known to fluctuate greatly (due to a combination of
changing pulse profiles and varying flux density from particular
profile components), in the two years prior to disappearance by
2015, S3 for PSRJ1622–4950 decreased on a trend from
≈10 mJy to ∼1 mJy (Scholz et al. 2017), and the one current
flux-calibrated value of S3 is larger by a factor of about 2 than
any reported before for this magnetar. Likewise, the one current
flux-calibrated measurement at 1.4 GHz, S1.4=63 mJy
(Figure 2(b) and Section 3.2), is the largest such value ever
reported for this magnetar (and comparable to the maximum
non-calibrated values from 2000 to 2001; see Figure 3 of
Scholz et al. 2017). Thus, while the flux densities are currently
fluctuating, these initial measurements together with the
historical record are compatible with the notion that relatively
soon after outburst, PSRJ1622–4950 reaches maximum
period-averaged flux densities at 1.4–3 GHz of tens of mJy—
and apparently not substantially more or less (with the caveat
that we started observing within one month of the latest
outburst, while radio observations started only two years after
the 2007 outburst).
Unlike ordinary pulsars, the radio spectra of magnetars are

remarkably flat, resulting in pulsed detections at record
frequencies of nearly 300 GHz (e.g., Torne et al. 2017). Owing
to the varying flux densities, the reliable determination of
magnetar spectra ideally requires simultaneous multi-frequency
observations. Pearlman et al. (2017) report on 2.3 and 8.4 GHz
“single polarization mode” observations of PSRJ1622–4950
with the Deep Space Network DSS-43 antenna on 2017 May
23, from which they obtain a spectral index α2.3–8.4=−1.7±
0.2 (where Sf∝f α). Without further details we cannot assess
whether the single polarization mode might bias the flux
density determination in a highly polarized source. In any case,
their reported mean S2.3=3.8±0.8 mJy is a factor of ∼10
smaller than our two Parkes flux-calibrated measurements. Our
own flux-calibrated measurements presented in this paper
correspond to a nominal spectral index α1.4–3.1=−0.8, but
these were not performed simultaneously. Either of these α
values would correspond to steeper spectra than have been

Table 3
Spectral Fits for X-Ray Detections of PSRJ1622–4950 in 2017

Telescope ObsID Start Time 0.3–10 keV Absorbed Flux kT
(MJD) (10−12 erg cm−2 s−1) (keV)

Swift 00010071001 57870.7 6.7 0.7
0.4

-
+ 0.80±0.04

Swift 00010071002 57874.7 7.1 0.4
0.3

-
+ 0.77±0.03

Swift 00010071003 57878.7 5.9 0.7
0.6

-
+ 0.79 0.06

0.07
-
+

NuSTAR/Chandra 80202051002/19214 57880.9 6.30 0.07
0.08

-
+ 0.791±0.006

NuSTAR/Chandra 80202051004/19215 57896.2 4.98 0.04
0.05

-
+ 0.770±0.005

NuSTAR/Chandra 80202051006/19216 57995.1 2.42 0.02
0.03

-
+ 0.778±0.006

Note. This joint absorbed blackbody fit (tbabs*bbody) yielded a Cash statistic of 6201 and χ2=5932 for 6115 degrees of freedom (reduced χ2=0.97). All
uncertainties are given at the 1σ confidence level. The absorbing column density, NH=(6. 4±0.1)×1022 cm−2, was constrained to have the same value for every
observing epoch. See Section 3.6 for more details.
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measured for this pulsar (e.g., Anderson et al. 2012), and
further investigations are desirable.

4.2. Polarimetry and Magnetospheric Geometry

Levin et al. (2012) showed that the PSRJ1622–4950 radio
profile changes significantly from observation to observation
but they were able to classify the various profiles into four main
types (see their Figure 3). The present profile at 1.4 GHz
(Figure 2(b)) does not resemble any of these categories. In
particular the trailing component appears to now be completely
suppressed, the circular polarization is opposite in sign, and the
linear polarization fraction is now somewhat larger (although
still much less than the 3 GHz fraction, in part presumably due
to interstellar scattering; see Camilo et al. 2008; Levin
et al. 2012). The RVM fits to the data in Figure 2(a) give
α≈20°(angle between the magnetic and rotation axes) and
β≈−10°(angle of closest approach of the line of sight to the
magnetic axis). This is broadly the same geometry as in Levin
et al. (2012). However, the location of the inflection point in
position angle (PA) has changed substantially. Whereas in
Levin et al. (2012) the inflection point occurred prior to the
observed profile peak (see, e.g., their Figure 4), it now comes
substantially later than the peak (near phase 0.65 in
Figure 2(a)); the difference between the inflection points is
92°±5°. This can also be seen by the fact that the observed
PA swing now appears largely concave whereas previously it
was convex. Our conclusion is that we are now seeing emission
from a very different location in the magnetosphere compared
to previously.

4.3. X-Ray Pulsations

We have presented the first detection of X-ray pulsations
from PSRJ1622–4950(Figure 4). The profile appears to be a
broad sinusoid, with a small amount of higher harmonic
structure seen as a secondary peak on its trailing edge. Such
low harmonic content is common in magnetars (Kaspi &
Beloborodov 2017).

The measured pulsed fraction for PSRJ1622–4950,
PF=5%, appears to be low for a magnetar not in quiescence
(more typical values are ≈30%; Kaspi & Beloborodov 2017),
and does not yet appear to be changing as the magnetar cools
following its recent outburst. However, such low PFs both
following outbursts and in quiescence have been observed in
some magnetars. Scholz & Kaspi (2011) measured a PF as low
as 6%±2% immediately following the 2009 outburst of
1E1547.0−5408, which then increased as the magnetar’s flux
decreased. In quiescence, the magnetar 4U0142+61 has
PF=5%. Interestingly, following both its 2011 and 2015
outbursts, the PF increased following the outburst and
decreased back to the quiescent value on a timescale of
approximately one month (Archibald et al. 2017). Since we did
not observe the first month of the recent outburst of
PSRJ1622–4950, we cannot determine whether a post-out-
burst increase or decrease occurred, nor whether the low PF
that we have measured is similar to its quiescent value.
However, further sensitive observations in the coming months
could constrain the PF evolution for PSRJ1622–4950.

4.4. X-Ray Flux and Spectral Evolution

With XSPEC, we infer an unabsorbed 0.3–10 keV flux for
the first Chandra detection in 2017 (cf. Table 3) of

(1.6±0.1)×10−11 erg cm−2 s−1. Using the only available
estimate of the distance to PSRJ1622–4950 (9 kpc from its
DM; Levin et al. 2010), the corresponding X-ray luminosity is
LX≈1.5×1035 erg s−1 (as usual the DM-derived distance has
a substantial but unknown uncertainty). This far exceeds the
contemporaneous spin-down luminosity (Table 2), i.e.,
L EX  ˙ . By contrast, during quiescence the unabsorbed
X-ray luminosity (Section 3.4) is LX<7.7×1032 erg s−1.
The last measured value of frequency derivative for
PSRJ1622–4950 before quiescence ( 1.3 10 ;13n = - ´ -˙
Scholz et al. 2017) corresponds to E 1.1 1033= ´˙ erg s−1.
Thus, during quiescence L EX  ˙ . These properties are
characteristic of transient magnetars.
Following an X-ray flux increase of three orders of

magnitude over its quiescent value (Section 3.6), the flux of
PSRJ1622–4950is clearly waning (Figure 3). The flux
evolution and spectral properties of the magnetar are broadly
similar to those measured for its putative 2007 outburst. Fitting
an exponential decay model to our measured fluxes yields an
e-fold decay timescale of 111±19 days. This is shorter than
the 360 days measured by Anderson et al. (2012) for the
previous outburst decay, although that timescale was measured
over 1350 days starting later post outburst, compared to
130 days now starting roughly one month after outburst. The
BB temperature kT= 0.8 keV measured early during this
outburst is similar to that measured in 2007–2009 and higher
than kT=0.5 keV measured in 2011 (Anderson et al. 2012),
although their uncertainties were larger than ours.
The BB temperature and X-ray flux decay timescale for

PSRJ1622–4950are similar to those measured for other
magnetar outbursts. In the weeks to months following outbursts,
transient magnetars typically have high kT (>0.7 keV; e.g.,
Scholz & Kaspi 2011; Coti Zelati et al. 2017), compared to their
quiescent BB temperatures (kT≈0.4 keV; Olausen et al. 2013).
Also, post-outburst magnetar light-curves typically decay on
timescales of hundreds of days (e.g., Scholz et al. 2014; Coti
Zelati et al. 2017). The lack of spectral evolution in the
relaxation thus far is also not particularly unusual (see, e.g., Rea
et al. 2013); however, as the flux decays by more than an order
of magnitude from its maximum we expect a decline in kT as it
returns to the quiescent value.
Some magnetars show spectral turnovers above ∼10 keV

(e.g., Kuiper et al. 2004), such that most of their energy output
emerges above the traditionally studied soft X-ray band. For
PSRJ1622–4950, we have not detected any emission above
15 keV (Section 3.6). Based on the unabsorbed soft X-ray flux
at the epoch of the first joint Chandra and NuSTAR
observations (in the 1–10 keV range, to be consistent with
the literature; Enoto et al. 2017), and the limit on the hard
X-ray flux, we derive a hardness ratio of LH/LS<0.07.
The transient magnetars SGR0501+4516, 1E1547.0−5408,

SGR1833−0832 (Enoto et al. 2017, and references therein),
and SGR1935+2154 (Younes et al. 2017), all showed PL
components within days of their outbursts. Subsequent observa-
tions of SGR0501+4516 and 1E1547.0−5408 indicate that
the emission became softer with time. The non-detection of a
hard X-ray component in PSRJ1622–4950 could therefore be
due to the one to two month delay between the outburst and the
first NuSTAR observation, although we cannot exclude that
LH/LS was always small for this magnetar.
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4.5. Torque Evolution

Torque increase following X-ray outbursts is common in
magnetars, and a broad trend appears to be emerging from at
least a subset of them: a monotonic increase in the torque on
the neutron star followed by a period of erratic variations and
finally a monotonic decrease. Each of these phases lasts from
months to a few years.

While the torques on the transients XTEJ1810−197 and
PSRJ1622–4950 were not well sampled after their outbursts in
2003 and 2007, respectively, they both showed rapid varia-
tions, followed by a gradual monotonic decrease over a period
of a few years. Both magnetars turned off in the radio band
following these torque decreases (Camilo et al. 2016; Scholz
et al. 2017). 1E1048.1−5937 experienced torque increases
following each of its X-ray outbursts in 2002, 2007, and 2012,
which then recovered to the pre-outburst value on a timescale
of ∼600 days with erratic variations in between (Archibald
et al. 2015). Comparable trends have been observed following
the 2008 and 2009 outbursts of 1E1547.0−5408 (Dib
et al. 2012; F. Camilo et al. 2018, in preparation).

Before its radio disappearance in 2014, the torque observed
for PSRJ1622–4950 had smoothly decreased to half of the
lowest value observed so far in 2017 (Scholz et al. 2017, and
Figure 3). This period of monotonic torque variation started in
2012, some five years after the previous outburst. The torque
increase that we have measured following the recent outburst
(peaking at a value 60% larger than ever before observed for
this magnetar) occurred over a period of ≈100 days, and is
being followed by erratic variations (Figure 3). By analogy
with the 2007 outburst (for which, however, a reliable torque
record started only in 2009), we are still in the phase where
erratic variations could be expected to continue for several
hundred more days.

5. Conclusions

We have presented new radio and X-ray observations of
PSRJ1622–4950 that demonstrate that this magnetar most
likely reactivated between 2017 March 19 and April 5. This
is the first magnetar for which radio emission has been
re-detected following a long period of inactivity. The (variable)
radio flux density is approximately 100× larger than during its
dormant state that lasted for more than two years. The X-ray
flux one month after reactivation was at least 800× larger than
during quiescence, and has been decaying seemingly exponen-
tially on a ≈100 day timescale, with roughly constant spectrum
thus far. This high-flux state, together with a radio-derived
rotational ephemeris, have enabled for the first time the
detection of X-ray pulsations for this magnetar, with a small
pulsed fraction of 5%. The pulsar’s geometry inferred from a
polarization analysis of the radio emission appears to be
broadly consistent with that determined six to eight years
earlier. However, the RVM model fits, and an observed change
in the inflection point of the classic PA “S” swing, suggest that
we are now seeing radio emission from a different location in
the magnetosphere than previously. This indicates a novel way
in which radio emission from magnetars can differ from that of
ordinary pulsars. Further investigation of this effect could
potentially open a new window into the large-scale behavior of
plasma flows and magnetic field geometry in magnetars. The
torque on the neutron star is currently varying rapidly and
unsteadily, as is common for magnetars following outburst,

having changed by a factor of 7 within six months of
reactivation, and we expect additional such variations for
several months to come.
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