3,843 research outputs found
Relative influence of environmental factors on biodiversity and behavioural traits of a rare mesopelagic fish, Trachipterus trachypterus (gmelin, 1789), in a continental shelf front of the Mediterranean Sea
Coastal environments can be influenced by water body masses with particular physical, chemical, and biological properties that create favourable conditions for the development of unique planktonic communities. In this study, we investigated a continental shelf front at Ponza Island (Tyrrhenian Sea) and discussed its diversity and complexity in relation to major environmental parameters. Moon phase and current direction were found to play a significant role in shaping species abundance and behaviour. During in situ observations, we also provided the first data on the behaviour of juveniles of a rare mesopelagic species, Trachipterus trachypterus, suggesting the occurrence of Batesian mimicry
A Comprehensive X-ray Absorption Model for Atomic Oxygen
An analytical formula is developed to represent accurately the
photoabsorption cross section of O I for all energies of interest in X-ray
spectral modeling. In the vicinity of the Kedge, a Rydberg series expression is
used to fit R-matrix results, including important orbital relaxation effects,
that accurately predict the absorption oscillator strengths below threshold and
merge consistently and continuously to the above-threshold cross section.
Further minor adjustments are made to the threshold energies in order to
reliably align the atomic Rydberg resonances after consideration of both
experimental and observed line positions. At energies far below or above the
K-edge region, the formulation is based on both outer- and inner-shell direct
photoionization, including significant shake-up and shake-off processes that
result in photoionization-excitation and double photoionization contributions
to the total cross section. The ultimate purpose for developing a definitive
model for oxygen absorption is to resolve standing discrepancies between the
astronomically observed and laboratory measured line positions, and between the
inferred atomic and molecular oxygen abundances in the interstellar medium from
XSTAR and SPEX spectral models
Boolean Models of Bistable Biological Systems
This paper presents an algorithm for approximating certain types of dynamical
systems given by a system of ordinary delay differential equations by a Boolean
network model. Often Boolean models are much simpler to understand than complex
differential equations models. The motivation for this work comes from
mathematical systems biology. While Boolean mechanisms do not provide
information about exact concentration rates or time scales, they are often
sufficient to capture steady states and other key dynamics. Due to their
intuitive nature, such models are very appealing to researchers in the life
sciences. This paper is focused on dynamical systems that exhibit bistability
and are desc ribedby delay equations. It is shown that if a certain motif
including a feedback loop is present in the wiring diagram of the system, the
Boolean model captures the bistability of molecular switches. The method is
appl ied to two examples from biology, the lac operon and the phage lambda
lysis/lysogeny switch
Study of metals in leached soils of a municipal dumpsite in Tampico, Tamaulipas, Mexico: preliminary results
The Zapote dumpsite measures 420000 m 2 and is 28 years old; an estimated 2.5 millions tons of waste have accumulated on the site (household waste, clinical waste, commercial waste). The thickness of the waste is 3 to 9 meters. Since operations began, no control regulations have existed on the residues received. The Zapote dumpsite is located within a salt-marsh between a system of channels and river lagoons of brackish water, located in a tropical sedimentary environment in the urban zone of Tampico, Tamaulipas, Mexico. Recently, the Zapote has been closed and work is presently underway in its rehabilitation since a geo-environmental perspective. The present investigation integrates information of preliminary results of metals (Pb, Ni, Cd, Cu, Mg, Fe and Al) contained in sediments that underlie the Zapote dumpsite. In laboratory research the metals of the sediment were correlated with the metals contained in samples of leachate from the Zapote dumpsite. The concentration of metals Pb, Ni, Cd, Cu, Mg, Fe and Al were analyzed in samples of sediments that underlie the body of the dumpsite in layers of 10 cm, reaching a depth of 1.5 m under the interface waste-soil. The results denote high concentrations of metals in layers that are in contact with waste that decreased until reaching 60 to 80 cm of depth. The proportions of the concentrations of metals studied in the soil are comparable with that leached, until layers of 60 to 80 cm of depth are reached, and are then lost in the deepest layers. The high plastic characteristics of clay layers have stood in the way of metallic contaminants in sub layers of the Zapote dumpsite. The results were correlated with metal concentrations of natural and anthropogenic sediments of the region
Infrared Spectroscopy of Molecular Supernova Remnants
We present Infrared Space Observatory spectroscopy of sites in the supernova
remnants W28, W44, and 3C391, where blast waves are impacting molecular clouds.
Atomic fine-structure lines were detected from C, N, O, Si, P, and Fe. The S(3)
and S(9) lines of H2 were detected for all three remnants. The observations
require both shocks into gas with moderate (~ 100 /cm3) and high (~10,000 /cm3)
pre-shock densities, with the moderate density shocks producing the ionic lines
and the high density shock producing the molecular lines. No single shock model
can account for all of the observed lines, even at the order of magnitude
level. We find that the principal coolants of radiative supernova shocks in
moderate-density gas are the far-infrared continuum from dust grains surviving
the shock, followed by collisionally-excited [O I] 63.2 and [Si II] 34.8 micron
lines. The principal coolant of the high-density shocks is
collisionally-excited H2 rotational and ro-vibrational line emission. We
systematically examine the ground-state fine structure of all cosmically
abundant elements, to explain the presence or lack of all atomic fine lines in
our spectra in terms of the atomic structure, interstellar abundances, and a
moderate-density, partially-ionized plasma. The [P II] line at 60.6 microns is
the first known astronomical detection. There is one bright unidentified line
in our spectra, at 74.26 microns. The presence of bright [Si II] and [Fe II]
lines requires partial destruction of the dust. The required gas-phase
abundance of Fe suggests 15-30% of the Fe-bearing grains were destroyed. The
infrared continuum brightness requires ~1 Msun of dust survives the shock,
suggesting about 1/3 of the dust mass was destroyed, in agreement with the
depletion estimate and with theoretical models for dust destruction.Comment: 40 pages; 10 figures; accepted by ApJ July 11, 200
Accelerated and natural carbonation of concretes with internal curing and shrinkage/viscosity modifiers
Abstract In many parts of the world, corrosion of reinforcing steel in concrete induced by carbonation of the concrete continues to be a major durability concern. This paper investigates the accelerated and natural carbonation resistance of a set of seven concretes, specifically evaluating the effects of internal curing and/or shrinkage/viscosity modifiers on carbonation resistance. In addition to five different ordinary portland cement (OPC) concretes, two concretes containing 20 % of a Class F fly ash as replacement for cement on a mass basis are also evaluated. For all seven concrete mixtures, a good correlation between accelerated (lab) and natural (field) measured carbonation coefficients is observed. Conversely, there is less correlation observed between the specimens’ carbonation resistance and their respective 28 days compressive strengths, with the mixtures containing the shrinkage/viscosity modifier specifically exhibiting an anomalous behavior of higher carbonation resistance at lower strength levels. For both the accelerated and natural exposures, the lowest carbonation coefficients are obtained for two mixtures, one containing the shrinkage/viscosity modifier added in the mixing water and the other containing a solution of the same admixture used to pre-wet fine lightweight aggregate. Additionally, the fly ash mixtures exhibited a significantly higher carbonation coefficient in both exposures than their corresponding OPC concretes
Emission lines from rotating proto-stellar jets with variable velocity profiles. I. Three-dimensional numerical simulation of the non-magnetic case
Using the Yguazu-a three-dimensional hydrodynamic code, we have computed a
set of numerical simulations of heavy, supersonic, radiatively cooling jets
including variabilities in both the ejection direction (precession) and the jet
velocity (intermittence). In order to investigate the effects of jet rotation
on the shape of the line profiles, we also introduce an initial toroidal
rotation velocity profile, in agreement with some recent observational evidence
found in jets from T Tauri stars which seems to support the presence of a
rotation velocity pattern inside the jet beam, near the jet production region.
Since the Yguazu-a code includes an atomic/ionic network, we are able to
compute the emission coefficients for several emission lines, and we generate
line profiles for the H, [O I]6300, [S II]6716 and [N II]6548 lines. Using
initial parameters that are suitable for the DG Tau microjet, we show that the
computed radial velocity shift for the medium-velocity component of the line
profile as a function of distance from the jet axis is strikingly similar for
rotating and non-rotating jet models. These findings lead us to put forward
some caveats on the interpretation of the observed radial velocity distribution
from a few outflows from young stellar objects, and we claim that these data
should not be directly used as a doubtless confirmation of the
magnetocentrifugal wind acceleration models.Comment: 15 pages, 8 figures. Accepted to publication in Astronomy and
Astrophysic
The Source of Three-minute Magneto-acoustic Oscillations in Coronal Fans
We use images of high spatial, spectral and temporal resolution, obtained
using both ground- and space-based instrumentation, to investigate the coupling
between wave phenomena observed at numerous heights in the solar atmosphere.
Intensity oscillations of 3 minutes are observed to encompass photospheric
umbral dot structures, with power at least three orders-of-magnitude higher
than the surrounding umbra. Simultaneous chromospheric velocity and intensity
time series reveal an 87 \pm 8 degree out-of-phase behavior, implying the
presence of standing modes created as a result of partial wave reflection at
the transition region boundary. An average blue-shifted Doppler velocity of
~1.5 km/s, in addition to a time lag between photospheric and chromospheric
oscillatory phenomena, confirms the presence of upwardly-propagating slow-mode
waves in the lower solar atmosphere. Propagating oscillations in EUV intensity
are detected in simultaneous coronal fan structures, with a periodicity of 172
\pm 17 s and a propagation velocity of 45 \pm 7 km/s. Numerical simulations
reveal that the damping of the magneto-acoustic wave trains is dominated by
thermal conduction. The coronal fans are seen to anchor into the photosphere in
locations where large-amplitude umbral dot oscillations manifest. Derived
kinetic temperature and emission measure time-series display prominent
out-of-phase characteristics, and when combined with the previously established
sub-sonic wave speeds, we conclude that the observed EUV waves are the coronal
counterparts of the upwardly-propagating magneto-acoustic slow-modes detected
in the lower solar atmosphere. Thus, for the first time, we reveal how the
propagation of 3 minute magneto-acoustic waves in solar coronal structures is a
direct result of amplitude enhancements occurring in photospheric umbral dots.Comment: Accepted into ApJ (13 pages and 10 figures
Stellar Population gradients in galaxy discs from the CALIFA survey
While studies of gas-phase metallicity gradients in disc galaxies are common,
very little has been done in the acquisition of stellar abundance gradients in
the same regions. We present here a comparative study of the stellar
metallicity and age distributions in a sample of 62 nearly face-on, spiral
galaxies with and without bars, using data from the CALIFA survey. We measure
the slopes of the gradients and study their relation with other properties of
the galaxies. We find that the mean stellar age and metallicity gradients in
the disc are shallow and negative. Furthermore, when normalized to the
effective radius of the disc, the slope of the stellar population gradients
does not correlate with the mass or with the morphological type of the
galaxies. Contrary to this, the values of both age and metallicity at 2.5
scale-lengths correlate with the central velocity dispersion in a similar
manner to the central values of the bulges, although bulges show, on average,
older ages and higher metallicities than the discs. One of the goals of the
present paper is to test the theoretical prediction that non-linear coupling
between the bar and the spiral arms is an efficient mechanism for producing
radial migrations across significant distances within discs. The process of
radial migration should flatten the stellar metallicity gradient with time and,
therefore, we would expect flatter stellar metallicity gradients in barred
galaxies. However, we do not find any difference in the metallicity or age
gradients in galaxies with without bars. We discuss possible scenarios that can
lead to this absence of difference.Comment: 24 pages, 17 figures, accepted for publication in A&
IMF - metallicity: a tight local relation revealed by the CALIFA survey
Variations in the stellar initial mass function (IMF) have been invoked to
explain the spectroscopic and dynamical properties of early-type galaxies.
However, no observations have yet been able to disentangle the physical driver.
We analyse here a sample of 24 early-type galaxies drawn from the CALIFA
survey, deriving in a homogeneous way their stellar population and kinematic
properties. We find that the local IMF is tightly related to the local
metallicity, becoming more bottom-heavy towards metal-rich populations. Our
result, combined with the galaxy mass-metallicity relation, naturally explains
previous claims of a galaxy mass-IMF relation, derived from non-IFU spectra. If
we assume that - within the star formation environment of early-type galaxies -
metallicity is the main driver of IMF variations, a significant revision of the
interpretation of galaxy evolution observables is necessary.Comment: Accepted for publication in ApJL. 6 pages, 4 figure
- …