4,928 research outputs found

    The Wolf-Rayet Content of M33

    Full text link
    Wolf-Rayet stars (WRs) are evolved massive stars, and the relative number of WC-type and WN-type WRs should vary with metallicity, providing a sensitive test of stellar evolutionary theory. The observed WC/WN ratio is much higher than that predicted by theory in some galaxies but this could be due to observational incompleteness for WN-types, which have weaker lines. Previous studies of M33's WR content show a galactocentric gradient in the relative numbers of WCs and WNs, but only small regions have been surveyed with sufficient sensitivity to detect all of the WNs. Here we present a sensitive survey for WRs covering all of M33, finding 55 new WRs, mostly of WN type. Our spectroscopy also improves the spectral types of many previously known WRs, establishing in one case that the star is actually a background quasar. The total number of spectroscopically confirmed WRs in M33 is 206, a number we argue is complete to approximately 5%, with most WRs residing in OB associations, although approximately 2% are truly isolated. The WC/WN ratio in the central regions (<2 kpc) of M33 is much higher than that predicted by the current Geneva evolutionary models, while the WC/WN ratios in the outer regions are in good accord, as are the values in the SMC and LMC. The WC/WN ratio and the WC subtype distribution both argue that the oxygen abundance gradient in M33 is significantly larger than found by some recent studies, but are consistent with the two-component model proposed by Magrini et al.Comment: ApJ, in pres

    Implications of the metallicity dependence of Wolf-Rayet winds

    Full text link
    Aims: Recent theoretical predictions for the winds of Wolf-Rayet stars indicate that their mass-loss rates scale with the initial stellar metallicity in the local Universe.We aim to investigate how this predicted dependence affects the models of Wolf-Rayet stars and their progeny in different chemical environments. Methods: We compute models of stellar structure and evolution for Wolf-Rayet stars for different initial metallicities, and investigate how the scaling of the Wolf-Rayet mass-loss rates affects the final masses, the lifetimes of the WN and WC subtypes, and how the ratio of the two populations vary with metallicity. Results: We find significant effects of metallicity dependent mass-loss rates for Wolf-Rayet stars. For models that include the scaling of the mass-loss rate with initial metallicity, all WR stars become neutron stars rather than black holes at twice the solar metallicity; at lower ZZ, black holes have larger masses. We also show that our models that include the mass-loss metallicity scaling closely reproduce the observed decrease of the relative population of WC over WN stars at low metallicities.Comment: 8 pages, 9 figures, accepted by Astronomy & Astrophysic

    Limitations for shapelet-based weak-lensing measurements

    Full text link
    We seek to understand the impact on shape estimators obtained from circular and elliptical shapelet models under two realistic conditions: (a) only a limited number of shapelet modes is available for the model, and (b) the intrinsic galactic shapes are not restricted to shapelet models. We create a set of simplistic simulations, in which the galactic shapes follow a Sersic profile. By varying the Sersic index and applied shear, we quantify the amount of bias on shear estimates which arises from insufficient modeling. Additional complications due to PSF convolution, pixelation and pixel noise are also discussed. Steep and highly elliptical galaxy shapes cannot be accurately modeled within the circular shapelet basis system and are biased towards shallower and less elongated shapes. This problem can be cured partially by allowing elliptical basis functions, but for steep profiles elliptical shapelet models still depend critically on accurate ellipticity priors. As a result, shear estimates are typically biased low. Independently of the particular form of the estimator, the bias depends on the true intrinsic galaxy morphology, but also on the size and shape of the PSF. As long as the issues discussed here are not solved, the shapelet method cannot provide weak-lensing measurements with an accuracy demanded by upcoming missions and surveys, unless one can provide an accurate and reliable calibration, specific for the dataset under investigation.Comment: 8 pages, 5 figures, submitted to A&

    Massive runaway stars in the Small Magellanic Cloud

    Full text link
    Using archival Spitzer Space Telescope data, we identified for the first time a dozen runaway OB stars in the Small Magellanic Cloud (SMC) through the detection of their bow shocks. The geometry of detected bow shocks allows us to infer the direction of motion of the associated stars and to determine their possible parent clusters and associations. One of the identified runaway stars, AzV 471, was already known as a high-velocity star on the basis of its high peculiar radial velocity, which is offset by ~40 km/s from the local systemic velocity. We discuss implications of our findings for the problem of the origin of field OB stars. Several of the bow shock-producing stars are found in the confines of associations, suggesting that these may be "alien" stars contributing to the age spread observed for some young stellar systems. We also report the discovery of a kidney-shaped nebula attached to the early WN-type star SMC-WR3 (AzV 60a). We interpreted this nebula as an interstellar structure created owing to the interaction between the stellar wind and the ambient interstellar medium.Comment: Accepted by A&

    Limitations of model fitting methods for lensing shear estimation

    Full text link
    Gravitational lensing shear has the potential to be the most powerful tool for constraining the nature of dark energy. However, accurate measurement of galaxy shear is crucial and has been shown to be non-trivial by the Shear TEsting Programme. Here we demonstrate a fundamental limit to the accuracy achievable by model-fitting techniques, if oversimplistic models are used. We show that even if galaxies have elliptical isophotes, model-fitting methods which assume elliptical isophotes can have significant biases if they use the wrong profile. We use noise-free simulations to show that on allowing sufficient flexibility in the profile the biases can be made negligible. This is no longer the case if elliptical isophote models are used to fit galaxies made up of a bulge plus a disk, if these two components have different ellipticities. The limiting accuracy is dependent on the galaxy shape but we find the most significant biases for simple spiral-like galaxies. The implications for a given cosmic shear survey will depend on the actual distribution of galaxy morphologies in the universe, taking into account the survey selection function and the point spread function. However our results suggest that the impact on cosmic shear results from current and near future surveys may be negligible. Meanwhile, these results should encourage the development of existing approaches which are less sensitive to morphology, as well as methods which use priors on galaxy shapes learnt from deep surveys.Comment: 10 pages, 8 figure

    Stellar evolution with rotation XI: Wolf-Rayet star populations at different metallicities

    Full text link
    Grids of models of massive stars (MM \ge 20 MM_\odot) with rotation are computed for metallicities ZZ ranging from that of the Small Magellanic Cloud (SMC) to that of the Galactic Centre. The hydrostatic effects of rotation, the rotational mixing and the enhancements of the mass loss rates by rotation are included. The evolution of the surface rotational velocities of the most massive O--stars mainly depends on the mass loss rates and thus on the initial ZZ value. The minimum initial mass for a star for entering the Wolf--Rayet (WR) phase is lowered by rotation. For all metallicities, rotating stars enter the WR phase at an earlier stage of evolution and the WR lifetimes are increased, mainly as a result of the increased duration of the eWNL phase. Models of WR stars predict in general rather low rotation velocities (<50 < 50 km s1^{-1}) with a few possible exceptions, particularly at metallicities lower than solar where WR star models have in general faster rotation and more chance to reach the break--up limit.The properties of the WR populations as predicted by the rotating models are in general in much better agreement with the observations in nearby galaxies. The observed variation with metallicity of the fractions of type Ib/Ic supernovae with respect to type II supernovae as found by Prantzos & Boissier (\cite{Pr03}) is very well reproduced by the rotating models, while non--rotating models predict much too low ratios.Comment: 20 pages, 16 figure, Astronomy and Astrophysics, in pres

    The mass-loss rates of red supergiants and the de Jager prescription

    Full text link
    Mass loss of red supergiants (RSG) is important for the evolution of massive stars, but is not fully explained. Several empirical prescriptions have been proposed, trying to express the mass-loss rate (Mdot) as a function of fundamental stellar parameters (mass, luminosity, effective temperature). Our goal is to test whether the de Jager et al. (1988) prescription, used in some stellar evolution models, is still valid in view of more recent mass-loss determinations. By considering 40 Galactic RSGs presenting an infrared excess and an IRAS 60-mu flux larger than 2 Jy, and assuming a gas-to-dust mass ratio of 200, it is found that the de Jager rate agrees within a factor 4 with most Mdot estimates based on the 60-mu signal. It is also in agreement with 6 of the only 8 Galactic RSGs for which Mdot can be measured more directly through observations of the circumstellar gas. The two objects that do not follow the de Jager prescription (by an order of magnitude) are mu Cep and NML Cyg. We have also considered the RSGs of the Magellanic Clouds. Thanks to the works of Groenewegen et al. (2009) and Bonanos et al. (2010), we find that the RSGs of the SMC have Mdots consistent with the de Jager rate scaled by (Z/Zsun)**(alpha), where Z is the metallicity and alpha is 0.7. The situation is less clear for the LMC RSGs. In particular, for luminosties larger than 1.6E+05 Lsun, one finds numerous RSGs (except WOH-G64) having Mdot significantly smaller than the de Jager rate, and indicating that Mdot would no longer increase with L. Before this odd situation is confirmed through further analysis of LMC RSGs, we suggest to keep the de Jager prescription unchanged at solar metallicity in the stellar evolutionary models and to apply a (Z/Zsun)**0.7 dependence.Comment: 13 pages, 9 figures. Accepted by Astronomy and Astrophysic

    A Spectroscopic Search for the non-nuclear Wolf-Rayet Population of the metal-rich spiral galaxy M83

    Full text link
    We present a catalogue of non-nuclear regions containing Wolf-Rayet stars in the metal-rich spiral galaxy M83 (NGC5236). From a total of 283 candidate regions identified using HeII 4686 imaging with VLT-FORS2, Multi Object Spectroscopy of 198 regions was carried out, confirming 132 WR sources. From this sub-sample, an exceptional content of 1035 +/- 300 WR stars is inferred, with N(WC)/N(WN) approx 1.2, continuing the trend to larger values at higher metallicity amongst Local Group galaxies, and greatly exceeding current evolutionary predictions at high metallicity. Late-type stars dominate the WC population of M83, with N(WC8-9)/N(WC4-7)=9 and WO subtypes absent, consistent with metallicity dependent WC winds. Equal numbers of late to early WN stars are observed, again in contrast to current evolutionary predictions. Several sources contain large numbers of WR stars. In particular, #74 (alias region 35 from De Vaucouleurs et al. contains 230 WR stars, and is identified as a Super Star Cluster from inspection of archival HST/ACS images. Omitting this starburst cluster would result in revised statistics of N(WC)/N(WN) approx 1 and N(WC8-9)/N(WC4-7) approx 6 for the `quiescent' disk population. Including recent results for the nucleus and accounting for incompleteness in our spectroscopic sample, we suspect the total WR population of M83 may exceed 3000 stars.Comment: 39 pages, 13 figures, 17 finding charts, accepted for Astronomy & Astrophysics. Version will full resolution images available at ftp://astro1.shef.ac.uk/pub/pac/m83.ps.g

    Long-Term V-Band Monitoring of the Bright Stars of M33 at the Wise Observatory

    Get PDF
    We have conducted a long-term V-band photometric monitoring of M33 on 95 nights during four observing seasons (2000 - 2003). A total number of 6418 lightcurves of bright objects in the range of 14 - 21 mag have been obtained. All measurements are publicly available. A total of 127 new variables were detected, of which 28 are periodic. Ten previously known non-periodic variables were identified as periodic, 3 of which are Cepheids, and another previously known periodic variable was identified as an eclipsing binary. Our derived periods range from 2.11 to almost 300 days. For 50 variables we have combined our observations with those of the DIRECT project, obtaining lightcurves of up to 500 measurements, with a time-span of ~7 years. We have detected a few interesting variables, including a 99.3 day periodic variable with a 0.04 mag amplitude, at the position of SNR 19.Comment: 29 pages, accepted for publication in MNRAS. Additional material is available at http://wise-obs.tau.ac.il/~shporer/m33

    Star complexes and stellar populations in NGC 6822 - Comparison with the Magellanic Clouds

    Get PDF
    The star complexes (large scale star forming regions) of NGC 6822 were traced and mapped and their size distribution was compared with the size distribution of star complexes in the Magellanic Clouds (MCs). Furthermore, the spatial distributions of different age stellar populations were compared with each other. The star complexes of NGC 6822 were determined by using the isopleths, based on star counts, of the young stars of the galaxy, using a statistical cutoff limit in density. In order to map them and determine their geometrical properties, an ellipse was fitted to every distinct region satisfying this minimum limit. The Kolmogorov-Smirnov statistical test was used to study possible patterns in their size distribution. Isopleths were also used to study the stellar populations of NGC 6822. The star complexes of NGC 6822 were detected and a list of their positions and sizes was produced. Indications of hierarchical star formation, in terms of spatial distribution, time evolution and preferable sizes were found in NGC 6822 and the MCs. The spatial distribution of the various age stellar populations has indicated traces of an interaction in NGC 6822, dated before 350 +/- 50 Myr.Comment: 10 pages, 7 figures, accepted by A&A; minor typeface correction
    corecore