3 research outputs found

    The Prognostic Role of Global Longitudinal Strain and NT-proBNP in Heart Failure Patients Receiving Cardiac Resynchronization Therapy

    No full text
    Background: We aimed to evaluate whether baseline GLS (global longitudinal strain), NT-proBNP, and changes in these after cardiac resynchronization therapy (CRT) can predict long-term clinical outcomes and the echocardiographic-based response to CRT (defined by 15% relative reduction in left ventricular end-systolic volume). Methods: We enrolled 143 patients with stable ischemic heart failure (HF) undergoing CRT-D implantation. NT-proBNP and echocardiography were obtained before and 6 months after. The patients were followed up (median: 58 months) for HF-related deaths and/or HF hospitalizations (primary endpoint) or HF-related deaths (secondary endpoint). Results: A total of 84 patients achieved the primary and 53 the secondary endpoint, while 104 patients were considered CRT responders and 39 non-responders. At baseline, event-free patients had higher absolute GLS values (p p p = 0.002) was beneficially associated with lower primary endpoint incidence, while baseline NT-proBNP levels (HR = 1.55; 95% CI, 1.43–2.01; p = 0.002) and diabetes presence (HR = 1.27; 95% CI, 1.12–1.98; p = 0.003) were related to higher primary endpoint incidence. Conclusions: In HF patients undergoing CRT-D, baseline GLS and NT-proBNP concentrations may serve as prognostic factors, while they may predict the echocardiographic-based response to CRT

    A horizon scanning assessment of current and potential future threats to migratory shorebirds

    No full text
    We review the conservation issues facing migratory shorebird populations that breed in temperate regions and use wetlands in the non-breeding season. Shorebirds are excellent model organisms for understanding ecological, behavioural and evolutionary processes and are often used as indicators of wetland health. A global team of experienced shorebird researchers identified 45 issues facing these shorebird populations, and divided them into three categories (natural, current anthropogenic and future issues). The natural issues included megatsunamis, volcanoes and regional climate changes, while current anthropogenic threats encompassed agricultural intensification, conversion of tidal flats and coastal wetlands by human infrastructure developments and eutrophication of coastal systems. Possible future threats to shorebirds include microplastics, new means of recreation and infectious diseases. We suggest that this review process be broadened to other taxa to aid the identification and ranking of current and future conservation actions
    corecore