118 research outputs found

    Search for dark matter annihilation signals in the H.E.S.S. Inner galaxy survey

    Get PDF
    The central region of the Milky Way is one of the foremost locations to look for dark matter (DM) signatures. We report the first results on a search for DM particle annihilation signals using new observations from an unprecedented γ-ray survey of the Galactic Center (GC) region, i.e., the Inner Galaxy Survey, at very high energies (≳100  GeV) performed with the H.E.S.S. array of five ground-based Cherenkov telescopes. No significant γ-ray excess is found in the search region of the 2014-2020 dataset and a profile likelihood ratio analysis is carried out to set exclusion limits on the annihilation cross section ⟨σv⟩. Assuming Einasto and Navarro-Frenk-White (NFW) DM density profiles at the GC, these constraints are the strongest obtained so far in the TeV DM mass range. For the Einasto profile, the constraints reach ⟨σv⟩ values of 3.7×10^{-26}  cm^{3} s^{-1} for 1.5 TeV DM mass in the W^{+}W^{-} annihilation channel, and 1.2×10^{-26}  cm^{3} s^{-1} for 0.7 TeV DM mass in the τ^{+}τ^{-} annihilation channel. With the H.E.S.S. Inner Galaxy Survey, ground-based γ-ray observations thus probe ⟨σv⟩ values expected from thermal-relic annihilating TeV DM particles

    A deep spectromorphological study of the γ -ray emission surrounding the young massive stellar cluster Westerlund 1

    Get PDF
    Context. Young massive stellar clusters are extreme environments and potentially provide the means for efficient particle acceleration. Indeed, they are increasingly considered as being responsible for a significant fraction of cosmic rays (CRs) that are accelerated within the Milky Way. Westerlund 1, the most massive known young stellar cluster in our Galaxy, is a prime candidate for studying this hypothesis. While the very-high-energy γ-ray source HESS J1646-458 has been detected in the vicinity of Westerlund 1 in the past, its association could not be firmly identified. Aims. We aim to identify the physical processes responsible for the γ-ray emission around Westerlund 1 and thus to understand the role of massive stellar clusters in the acceleration of Galactic CRs better. Methods. Using 164 h of data recorded with the High Energy Stereoscopic System (H.E.S.S.), we carried out a deep spectromorphological study of the γ-ray emission of HESS J1646-458. We furthermore employed H I and CO observations of the region to infer the presence of gas that could serve as target material for interactions of accelerated CRs. Results. We detected large-scale (~2 diameter) γ-ray emission with a complex morphology, exhibiting a shell-like structure and showing no significant variation with γ-ray energy. The combined energy spectrum of the emission extends to several tens of TeV, and it is uniform across the entire source region. We did not find a clear correlation of the γ-ray emission with gas clouds as identified through H I and CO observations. Conclusions. We conclude that, of the known objects within the region, only Westerlund 1 can explain the majority of the γ-ray emission. Several CR acceleration sites and mechanisms are conceivable and discussed in detail. While it seems clear that Westerlund 1 acts as a powerful particle accelerator, no firm conclusions on the contribution of massive stellar clusters to the flux of Galactic CRs in general can be drawn at this point

    Constraints on the intergalactic magnetic field using Fermi-LAT and H.E.S.S. blazar observations

    Full text link
    Magnetic fields in galaxies and galaxy clusters are believed to be the result of the amplification of intergalactic seed fields during the formation of large-scale structures in the universe. However, the origin, strength, and morphology of this intergalactic magnetic field (IGMF) remain unknown. Lower limits on (or indirect detection of) the IGMF can be obtained from observations of high-energy gamma rays from distant blazars. Gamma rays interact with the extragalactic background light to produce electron-positron pairs, which can subsequently initiate electromagnetic cascades. The γ\gamma-ray signature of the cascade depends on the IGMF since it deflects the pairs. Here we report on a new search for this cascade emission using a combined data set from the Fermi Large Area Telescope and the High Energy Stereoscopic System. Using state-of-the-art Monte Carlo predictions for the cascade signal, our results place a lower limit on the IGMF of B>7.1×1016B > 7.1\times10^{-16} G for a coherence length of 1 Mpc even when blazar duty cycles as short as 10 yr are assumed. This improves on previous lower limits by a factor of 2. For longer duty cycles of 10410^4 (10710^7) yr, IGMF strengths below 1.8×10141.8\times10^{-14} G (3.9×10143.9\times10^{-14} G) are excluded, which rules out specific models for IGMF generation in the early universe.Comment: 20 pages, 7 figures, 4 tables. Accepted for publication in ApJ Letters. Auxiliary data is provided in electronic format at https://zenodo.org/record/801431

    A deep spectromorphological study of the γ\gamma-ray emission surrounding the young massive stellar cluster Westerlund 1

    Get PDF
    Young massive stellar clusters are extreme environments and potentially provide the means for efficient particle acceleration. Indeed, they are increasingly considered as being responsible for a significant fraction of cosmic rays (CRs) accelerated within the Milky Way. Westerlund 1, the most massive known young stellar cluster in our Galaxy is a prime candidate for studying this hypothesis. While the very-high-energy γ\gamma-ray source HESS J1646-458 has been detected in the vicinity of Westerlund 1 in the past, its association could not be firmly identified. We aim to identify the physical processes responsible for the γ\gamma-ray emission around Westerlund 1 and thus to better understand the role of massive stellar clusters in the acceleration of Galactic CRs. Using 164 hours of data recorded with the High Energy Stereoscopic System (H.E.S.S.), we carried out a deep spectromorphological study of the γ\gamma-ray emission of HESS J1646-458. We furthermore employed H I and CO observations of the region to infer the presence of gas that could serve as target material for interactions of accelerated CRs. We detected large-scale (2\sim 2^\circ diameter) γ\gamma-ray emission with a complex morphology, exhibiting a shell-like structure and showing no significant variation with γ\gamma-ray energy. The combined energy spectrum of the emission extends to several tens of TeV, and is uniform across the entire source region. We did not find a clear correlation of the γ\gamma-ray emission with gas clouds as identified through H I and CO observations. We conclude that, of the known objects within the region, only Westerlund 1 can explain the bulk of the γ\gamma-ray emission. Several CR acceleration sites and mechanisms are conceivable, and discussed in detail. (abridged)Comment: 15 pages, 9 figures. Corresponding authors: L. Mohrmann, S. Ohm, R. Rauth, A. Specoviu

    H.E.S.S. follow-up observations of GRB221009A

    Full text link
    GRB221009A is the brightest gamma-ray burst ever detected. To probe the very-high-energy (VHE, >>\!100 GeV) emission, the High Energy Stereoscopic System (H.E.S.S.) began observations 53 hours after the triggering event, when the brightness of the moonlight no longer precluded observations. We derive differential and integral upper limits using H.E.S.S. data from the third, fourth, and ninth nights after the initial GRB detection, after applying atmospheric corrections. The combined observations yield an integral energy flux upper limit of ΦUL95%=9.7×1012 ergcm2s1\Phi_\mathrm{UL}^{95\%} = 9.7 \times 10^{-12}~\mathrm{erg\,cm^{-2}\,s^{-1}} above Ethr=650E_\mathrm{thr} = 650 GeV. The constraints derived from the H.E.S.S. observations complement the available multiwavelength data. The radio to X-ray data are consistent with synchrotron emission from a single electron population, with the peak in the SED occurring above the X-ray band. Compared to the VHE-bright GRB190829A, the upper limits for GRB221009A imply a smaller gamma-ray to X-ray flux ratio in the afterglow. Even in the absence of a detection, the H.E.S.S. upper limits thus contribute to the multiwavelength picture of GRB221009A, effectively ruling out an IC dominated scenario.Comment: 10 pages, 4 figures. Accepted for publication in APJL. Corresponding authors: J. Damascene Mbarubucyeye, H. Ashkar, S. J. Zhu, B. Reville, F. Sch\"ussle

    Detection of extended gamma-ray emission around the Geminga pulsar with H.E.S.S

    Get PDF
    Geminga is an enigmatic radio-quiet gamma-ray pulsar located at a mere 250 pc distance from Earth. Extended very-high-energy gamma-ray emission around the pulsar was discovered by Milagro and later confirmed by HAWC, which are both water Cherenkov detector-based experiments. However, evidence for the Geminga pulsar wind nebula in gamma rays has long evaded detection by imaging atmospheric Cherenkov telescopes (IACTs) despite targeted observations. The detection of gamma-ray emission on angular scales > 2 deg poses a considerable challenge for the background estimation in IACT data analysis. With recent developments in understanding the complementary background estimation techniques of water Cherenkov and atmospheric Cherenkov instruments, the H.E.S.S. IACT array can now confirm the detection of highly extended gamma-ray emission around the Geminga pulsar with a radius of at least 3 deg in the energy range 0.5-40 TeV. We find no indications for statistically significant asymmetries or energy-dependent morphology. A flux normalisation of (2.8±0.7)×1012(2.8\pm0.7)\times10^{-12} cm2^{-2}s1^{-1}TeV1^{-1} at 1 TeV is obtained within a 1 deg radius region around the pulsar. To investigate the particle transport within the halo of energetic leptons around the pulsar, we fitted an electron diffusion model to the data. The normalisation of the diffusion coefficient obtained of D0=7.61.2+1.5×1027D_0 = 7.6^{+1.5}_{-1.2} \times 10^{27} cm2^2s1^{-1}, at an electron energy of 100 TeV, is compatible with values previously reported for the pulsar halo around Geminga, which is considerably below the Galactic average.Comment: 16 pages, 15 figures, 7 tables. Accepted for publication in Astronomy & Astrophysic

    A MeerKAT, e-MERLIN, H.E.S.S. and Swift search for persistent and transient emission associated with three localised FRBs

    Get PDF

    Detection of extended TeV emission around the Geminga pulsar with H.E.S.S.

    Get PDF
    Highly extended gamma-ray emission around the Geminga pulsar was discovered by Milagro and verified by HAWC. Despite many observations with Imaging Atmospheric Cherenkov Telescopes (IACTs), detection of gamma-ray emission on angular scales exceeding the IACT field-of-view has proven challenging. Recent developments in analysis techniques have enabled the detection of significant emission around Geminga in archival data with H.E.S.S.. In 2019, further data on the Geminga region were obtained with an adapted observation strategy. Following the announcement of the detection of significant TeV emission around Geminga in archival data, in this contribution we present the detection in an independent dataset. New analysis results will be presented, and emphasis given to the technical challenges involved in observations of highly extended gamma-ray emission with IACTs

    Astronomy outreach in Namibia : H.E.S.S. and beyond

    Get PDF
    Astronomy plays a major role in the scientific landscape of Namibia. Because of its excellent sky conditions, Namibia is home to ground-based observatories like the High Energy Spectroscopic System (H.E.S.S.), in operation since 2002. Located near the Gamsberg mountain, H.E.S.S. performs groundbreaking science by detecting very-high-energy gamma rays from astronomical objects. The fascinating stories behind many of them are featured regularly in the "Source of the Month", a blog-like format intended for the general public with more than 170 features to date. In addition to other online communication via social media, H.E.S.S. outreach activities have been covered locally, e.g. through 'open days' and guided tours on the site itself. An overview of the H.E.S.S. outreach activities are presented in this contribution, along with discussions relating to the current landscape of astronomy outreach and education in Namibia. There has also been significant activity in the country in recent months, whereby astronomy is being used to further sustainable development via human capacity-building. Finally, as we take into account the future prospects of radio astronomy in the country, momentum for a wider range of astrophysics research is clearly building — this presents a great opportunity for the astronomy community to come together to capitalise on this movement and support astronomy outreach, with the overarching aim to advance sustainable development in Namibia

    Detection of new Extreme BL Lac objects with H.E.S.S. and Swift XRT

    Get PDF
    Extreme high synchrotron peaked blazars (EHBLs) are amongst the most powerful accelerators found in nature. Usually the synchrotron peak frequency of an EHBL is above 1017^{17} Hz, i.e., lies in the range of medium to hard X-rays making them ideal sources to study particle acceleration and radiative processes. EHBL objects are commonly observed at energies beyond several TeV, making them powerful probes of gamma-ray absorption in the intergalactic medium. During the last decade, several attempts have been made to increase the number of EHBL detected at TeV energies and probe their spectral characteristics. Here we report new detections of EHBLs in the TeV energy regime, each at a redshift of less than 0.2, by the High Energy Stereoscopic System (H.E.S.S.). Also, we report on X-ray observations of these EHBLs candidates with Swift-XRT. In conjunction with the very high energy observations, this allows us to probe the radiation mechanisms and the underlying particle acceleration processes
    corecore