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19Institut für Physik und Astronomie, Universität Potsdam, Karl-Liebknecht-Strasse 24/25, D 14476 Potsdam, Germany

20Laboratoire Leprince-Ringuet, École Polytechnique, CNRS, Institut Polytechnique de Paris, F-91128 Palaiseau, France
21Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen Centre for Astroparticle Physics,

Erwin-Rommel-Str. 1, D 91058 Erlangen, Germany
22Institut für Astro- und Teilchenphysik, Leopold-Franzens-Universität Innsbruck, A-6020 Innsbruck, Austria
23Universität Hamburg, Institut für Experimentalphysik, Luruper Chaussee 149, D 22761 Hamburg, Germany

24Obserwatorium Astronomiczne, Uniwersytet Jagielloński, ulica Orla 171, 30-244 Kraków, Poland
25Landessternwarte, Universität Heidelberg, Königstuhl, D 69117 Heidelberg, Germany

26Institute of Astronomy, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University,
Grudziadzka 5, 87-100 Torun, Poland

27Nicolaus Copernicus Astronomical Center, Polish Academy of Sciences, ulica Bartycka 18, 00-716 Warsaw, Poland
28Institut für Physik, Humboldt-Universität zu Berlin, Newtonstrasse 15, D 12489 Berlin, Germany

PHYSICAL REVIEW LETTERS 129, 111101 (2022)
Editors' Suggestion

0031-9007=22=129(11)=111101(7) 111101-1 © 2022 American Physical Society

https://orcid.org/0000-0001-9689-2194
https://orcid.org/0000-0002-3620-0173
https://orcid.org/0000-0003-4007-0145


29Laboratoire Univers et Particules de Montpellier, Université Montpellier, CNRS/IN2P3,
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The central region of the Milky Way is one of the foremost locations to look for dark matter (DM)
signatures. We report the first results on a search for DM particle annihilation signals using new
observations from an unprecedented γ-ray survey of the Galactic Center (GC) region, i.e., the Inner Galaxy
Survey, at very high energies (≳100 GeV) performed with the H.E.S.S. array of five ground-based
Cherenkov telescopes. No significant γ-ray excess is found in the search region of the 2014–2020 dataset
and a profile likelihood ratio analysis is carried out to set exclusion limits on the annihilation cross section
hσvi. Assuming Einasto and Navarro-Frenk-White (NFW) DM density profiles at the GC, these constraints
are the strongest obtained so far in the TeV DM mass range. For the Einasto profile, the constraints
reach hσvi values of 3.7 × 10−26 cm3 s−1 for 1.5 TeV DM mass in the WþW− annihilation channel, and
1.2 × 10−26 cm3 s−1 for 0.7 TeV DM mass in the τþτ− annihilation channel. With the H.E.S.S. Inner
Galaxy Survey, ground-based γ-ray observations thus probe hσvi values expected from thermal-relic
annihilating TeV DM particles.

DOI: 10.1103/PhysRevLett.129.111101

Introduction.—The total matter content of the Universe
is made of about 85% dark and nonbaryonic matter as
suggested by growing evidence from astrophysics and
cosmology [1,2]. However, the nature of the dark matter
(DM) remains a fundamental question of modern physics.
A compelling class of stable DM candidates are weakly
interacting massive particles (WIMPs) [3–5]. Such particles
with mass and coupling strength at the electroweak scale
naturally emerge in several extensions of the standard
model of particle physics. WIMPs are thermally produced
in the early Universe and their relic density can represent all
the DM in the Universe [6], as accurately measured from
cosmological observations. The quest for WIMPs moti-
vates numerous experimental efforts to probe their non-
gravitational properties such as their production at particle
colliders [7], their scattering off nuclei on Earth [8], and
their decay and annihilation [9].
WIMPs would self-annihilate today in dense astrophysi-

cal environments, producing gamma rays in the final state
from hadronization, radiation, and decay of the standard
model particles produced in the annihilation process. Such
gamma rays could be eventually detected by ground-based
arrays of Imaging Atmospheric Cherenkov Telescopes
(IACTs) such as the High Energy Stereoscopic System
(H.E.S.S.) provided that the WIMP mass is high enough.
The self-annihilation of Majorana WIMPs of mass mDM
would produce an energy-differential flux of gamma rays in
a solid angle ΔΩ expressed as

dΦγ

dEγ
ðEγ;ΔΩÞ ¼

hσvi
8πm2

DM

X

f

BRf
dNf

γ

dEγ
ðEγÞJðΔΩÞ

with JðΔΩÞ ¼
Z

ΔΩ

Z

los
ρ2½sðr; θÞ�ds dΩ: ð1Þ

hσvi is the velocity-weighted annihilation cross section
averaged over the velocity distribution and dNf

γ=dEγ is the
differential yield of gamma rays per annihilation in the
channel f with its branching ratio BRf. The term JðΔΩÞ,
hereafter referred to as the J factor, corresponds to the
integral of the square of the DM density ρ over the line of
sight s and solid angle ΔΩ. The DM density ρ is assumed
spherically symmetric and therefore depends only on the
radial coordinate r from the center of the DM halo. It can be
expressed as r ¼ ðs2 þ r2⊙ − 2r⊙s cos θÞ1=2, with r⊙ the
distance of the observer to the GC taken to be r⊙ ¼ 8.5 kpc
[10], and θ the angle between the direction of observation
and the Galactic Center. The center of the Milky Way is
predicted as the brightest source of DM annihilations with a
DM distribution assumed to follow cuspy profiles conven-
iently described by the Einasto [11] or Navarro-Frenk-
White [12] parametrizations. Commonly used sets of
parameters for the above-mentioned DM profiles [13,14]
considered here are given in Table II of Ref. [15]. The DM
profiles are normalized to the local DM density ρ⊙ such
that ρðr⊙Þ ¼ ρ⊙ ¼ 0.39 GeV cm−3 [17]. Improved deter-
minations of the local DM density are being carried out
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(see, for instance, Ref. [18,19]). A change of ρ⊙ can be
propagated to the results by rescaling the DM signal by
ðρ⊙=0.39 GeV cm−3Þ2. Other parametrizations such as the
Burkert [21] or Moore [22] profile can be used. However,
cored profiles such as the Burkert one are not studied here,
since they need dedicated observations and analysis pro-
cedures [23]. The strongest constraints so far obtained on
WIMPs in the TeV mass range come from 254 h of
H.E.S.S. observations of the Galactic Center region [13].
In the present work, about 5 times more exposure in
total is available with respect to the previous H.E.S.S.
observations [15].
In this Letter, we report on a new search for DM

annihilation in the central region of the Milky Way halo
using an unprecedented dataset from very-high-energy
(VHE, E≳ 100 GeV) observations taken with the five-
telescope H.E.S.S. array of the Galactic Center region.
Observations and data analysis.—The H.E.S.S.

Collaboration is carrying out an extensive observation
program to survey the central region of the Milky Way.
Such a region can be observed with the H.E.S.S. observa-
tory under very good conditions due to its location near the
tropic of Capricorn. The survey aims at covering the inner
several hundred parsecs of the Galactic Center region, in
order to achieve the best possible sensitivity for DM
annihilation signals and Galactic Center outflows. Such
a survey, hereafter referred to as the Inner Galaxy Survey
(IGS), is the first-ever conducted deep VHE γ-ray survey of
the Galactic Center region. In order to cover so far
unexplored regions in VHE gamma rays, the current
implementation of the IGS is based on the definition of
a grid of telescope pointing positions up to Galactic
latitudes b ¼ þ3.2°, as shown in the top-left panel of
Fig. 1 of Ref. [15]. The present dataset makes use of 28-min
data taking runs between 2014 and 2020, amounting to a
total of 546 h (live time) of high-quality data follow-
ing the standard data quality selection procedure [24].
Observations are taken at observational zenith angles lower
than 40° to minimize systematic uncertainties in the event
reconstruction. The observational campaign results in an
averaged observational zenith angle of 18° for the present
dataset. An acceptance-corrected exposure time of at least
10 h is reached up to b ≈þ6° with the present dataset.
γ-ray-like events are selected and reconstructed with a
semianalytical shower model technique based on a fit of
observed shower images to a semi-analytical shower model
[25]. An angular resolution of 0.06° (68% containment
radius) and an energy resolution of 10% above 200 GeVare
achieved. The central region of the Milky Way is a complex
environment including numerous regions with VHE γ-ray
emission [26–28] as well as varying night sky background
in the field of view [14]. A study of the systematic
uncertainties in the background determination is presented
in Ref. [15].

The DM annihilation signal is searched in regions of
interest (ROI) defined as rings centered on the nominal
GC position. In order to avoid γ-ray contamination from
known astrophysical sources in the whole field of view, a
conservative set of exclusion regions is defined (see Fig. 1
in Ref. [15]) according to the H.E.S.S. angular resolution
and the extension of the emissions in the field of view. See
Ref. [15] for more details. The ROIs are therefore consid-
ered with inner radii from 0.5° to 2.9°, and width of 0.1°
each. This set of 25 rings is hereafter referred as to the ON
region. For each ROI, the residual γ-ray background is
measured on a run-by-run basis in a region of the field of
view taken symmetrically to the ON region from the
pointing position, which is hereafter referred to as the
OFF region. The excluded regions are similarly removed
from the ON and OFF regions such that they keep the same
solid angle and acceptance. The OFF regions are always
sufficiently far away from the ON regions, such that a
significant difference in the expected DM signal between
ON and OFF regions is obtained. More details are provided
in Fig. 2 of Ref. [15]. Any potential unaccounted γ-ray
emission is considered as part of the measured excess,
which makes the analysis conservative as long as no signal
is detected.
For each ROI, event distributions are built as a function

of energy and are hereafter referred to as the energy
count distributions. The systematic uncertainty on the
normalization of the measured energy count distributions
is 1% [15].
The statistical data analysis is based on a two-

dimensional log-likelihood ratio test statistic which makes
use of the expected spectral and spatial DM signal features
in 67 logarithmically spaced energy bins and 25 spatial bins
corresponding to the ROI. For a given DM mass, the
likelihood function reads

LijðNS;NBjNON;NOFFÞ¼
½βijðNS

ijþNB
ij Þ�NON;ij

NON;ij!
e−βijðN

S
ijþNB

ij Þ

×
½βijðNS0

ij þNB
ij Þ�NOFF;ij

NOFF;ij!
e−βijðN

S0
ij þNB

ij Þ

×e
−
ð1−βijÞ2
2σ2

βij : ð2Þ

NON;ij and NOFF;ij are the number of measured events in
the ON and OFF regions, respectively, in the spectral bin i
and in the spatial bin j. NB

ij is the expected number of
background events in the ði; jÞ bin for the ON and OFF
regions. NS

ij and NS0
ij are the total number of DM events in

the ði; jÞ bin for the ON and OFF regions, respectively. It
is obtained by folding the expected DM flux given in
Eq. (1) with the energy-dependent acceptance and energy
resolution. The γ-ray yield dNf

γ =dEγ in the channel f is
computed with the Monte Carlo event collision generator
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PYTHIAv8.135, including final state radiative corrections
[29]. The J factor values of each ROI are reported in
Table III of Ref. [15]. NS

ij þ NB
ij is the total number of

events in the spatial bin j and spectral bin i. The
systematic uncertainty can be accounted for in the like-
lihood function as a Gaussian nuisance parameter where
βij acts as a normalization factor and σβij is the width of
the Gaussian function (see, for instance, Refs. [30–32]).
βij is found by maximizing the likelihood function
such that dLij=dβij ≡ 0. A value of 1% for σβij is
used [15].
In case of no significant excess in the ROIs, constraints

on hσvi are obtained from the log-likelihood ratio TS
described in Ref. [33] assuming a positive signal hσvi > 0
[15]. We used the high statistics limit in which the TS
follows a χ2 distribution with one degree of freedom.
Values of hσvi for which TS is higher than 2.71 are
excluded at the 95% confidence level (CL).
Results.—We find no significant excess in any of the ON

regions with respect to the OFF regions. An analysis
crosscheck performed using independent event calibration
and reconstruction [34] corroborates the absence of sig-
nificant excess. Hence, we derive 95% CL upper limits on
hσvi. We explore the self-annihilation of WIMPs with
masses from 200 GeVup to 70 TeV, into the quark (bb̄, tt̄),
gauge bosons (WþW−, ZZ), lepton (eþe−, μþμ−, τþτ−),
and Higgs (hh) channels, respectively.
Figure 1 shows the 95% CL observed and expected

upper limits for the WþW− and τþτ− channels,
respectively, for the above-mentioned Einasto profile.

The observed limits are computed with ON and OFF
measured event distributions. The expected limits are
obtained from 300 Poisson realizations of the background
extracted from the OFF regions. See Supplement Material
[15] for more details. The mean expected upper limit and
the 68% and 95% containment bands are plotted. The
95% CL observed limits reach 3.7 × 10−26 cm3 s−1 for a
DM particle mass of 1.5 TeV in the WþW− channel, and
1.2 × 10−26 cm3 s−1 for 0.7 TeV DM mass in the τþτ−

annihilation channel. The limits in the τþτ− annihilation
channel cross the hσvi values expected for DM particles
annihilating with thermal-relic cross section [35]. The
limits for the other annihilation channels are shown in
Fig. 3 of Ref. [15]. At 1.5 TeV DM mass, we obtain an
improvement factor of 1.6 with respect to the results
shown in Ref. [13]. The larger statistics of the dataset from
longer observational live time and the data taking with the
CT1-5 array of H.E.S.S. contribute to the higher sensi-
tivity of the present analysis.
The left panel of Fig. 2 shows the limits for the NFW

profile as well as an alternative set of parameters for
the Einasto profile described in Ref. [29]. Assuming a
kiloparsec-sized cored DM density distribution such as the
Burkert profile would weaken the limits by about 2 orders
of magnitude, while a Moore-like profile would improve
the limit by a factor of about 2.
The right panel of Fig. 2 summarizes the limits obtained

from 254 h of previous H.E.S.S. observation of the Galactic
Center [13], from the HAWC observation of the Galactic
Center [36], from the observation of 15 dwarf galaxy

FIG. 1. Constraints on the velocity-weighted annihilation cross section hσvi for theWþW− (left panel) and τþτ− (right panel) channels
derived from the H.E.S.S. observations taken from 2014 to 2020. The constraints are expressed as 95% CL upper limits including the
systematic uncertainty on hσvi as a function of the DMmassmDM. The observed limit is shown as a black solid line. The mean expected
limit (black dashed line) together with the 68% (green band) and 95% (yellow band) CL statistical containment bands are shown. The
mean expected upper limit without systematic uncertainty is also shown (red dashed line). The horizontal gray long-dashed line is set to
the value of the natural scale expected for the thermal-relic WIMPs. The constraints obtained in the bb̄, tt̄, ZZ, hh, μþμ−, and eþe−
channels are given in Fig. 3 of Ref. [15].
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satellites of the Milky Way [37] as well as from the
observation of the GC with Fermi-LAT [38], and the
limits from the cosmic microwave background measured
by PLANCK [2]. The present H.E.S.S. constraints
surpass the Fermi-LAT limits for particle masses above
∼300 GeV.
Summary.—In this Letter we report on the latest results

on a search for annihilating DM signals from new
observations of the inner halo of the Milky Way with
the H.E.S.S. five-telescope array. The present dataset
amounts to 546 h of total live time spread over 6 yr of
H.E.S.S. observations. The absence of significant excess
yields constraints on the velocity-weighted annihilation
cross section of Majorana WIMPs. In the WþW− channel
we obtain 95% CL upper limits of 3.7 × 10−26 cm3 s−1 for
DM particles with mass of 1.5 TeV, assuming an Einasto
profile. These new limits improve significantly upon the
previous constraints and are the most constraining so far
in the TeV mass range. The strongest limits are obtained
for the τþτ− channel, reaching 1.2 × 10−26 cm3 s−1, for a
DM particle mass of 0.7 TeV. The limits obtained in the
τþτ− and eþe− channels challenge natural hσvi values
expected for the thermal-relic WIMPs in the TeV DM
mass range. The observations carried out with the IGS
program as well as the use of the full five-telescope array
contribute to the improved sensitivity of this analysis.
VHE observations of the central region of the Milky
Way with IACTs such as H.E.S.S. are unique for an
in-depth study of WIMP models and provide a crucial
insight of the TeV WIMP DM paradigm. They provide an

unprecedented dataset to explore the yet-uncharted
parameter space of multi-TeV DM models such as the
benchmark candidates Wino and Higgsino (see, for
instance, Ref. [39] and references therein) which naturally
arise in simple extensions to the standard model. The IGS
program carried out with H.E.S.S. is an important legacy
of H.E.S.S. and paves the way to future Southern-site
observations with CTA [32].
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atomique et aux énergies alternatives (CEA), the U.K.
Science and Technology Facilities Council (STFC), the
Knut and Alice Wallenberg Foundation, the Polish Ministry
of Education and Science, Agreement No. 2021/WK/06,
the South African Department of Science and Technology
and National Research Foundation, the University of
Namibia, the National Commission on Research, Science
& Technology of Namibia (NCRST), the Austrian Federal
Ministry of Education, Science and Research and the
Austrian Science Fund (FWF), the Australian Research
Council (ARC), the Japan Society for the Promotion of
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previous published H.E.S.S. limits from 254 h of observations of the GC [13] (orange line), the limits from the observation of the GC
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