198 research outputs found

    Photoperiod decelerates the advance of spring phenology of six deciduous tree species under climate warming

    Get PDF
    Vegetation phenology in spring has substantially advanced under climate warming, consequently shifting the seasonality of ecosystem process and altering biosphere–atmosphere feedbacks. However, whether and to what extent photoperiod (i.e., daylength) affects the phenological advancement is unclear, leading to large uncertainties in projecting future phenological changes. Here we examined the photoperiod effect on spring phenology at a regional scale using in situ observation of six deciduous tree species from the Pan European Phenological Network during 1980–2016. We disentangled the photoperiod effect from the temperature effect (i.e., forcing and chilling) by utilizing the unique topography of the northern Alps of Europe (i.e., varying daylength but uniform temperature distribution across latitudes) and examining phenological changes across latitudes. We found prominent photoperiod-induced shifts in spring leaf-out across latitudes (up to 1.7 days per latitudinal degree). Photoperiod regulates spring phenology by delaying early leaf-out and advancing late leaf-out caused by temperature variations. Based on these findings, we proposed two phenological models that consider the photoperiod effect through different mechanisms and compared them with a chilling model. We found that photoperiod regulation would slow down the advance in spring leaf-out under projected climate warming and thus mitigate the increasing frost risk in spring that deciduous forests will face in the future. Our findings identify photoperiod as a critical but understudied factor influencing spring phenology, suggesting that the responses of terrestrial ecosystem processes to climate warming are likely to be overestimated without adequately considering the photoperiod effect

    Biodiversity promotes ecosystem functioning despite environmental change

    Full text link
    Three decades of research have demonstrated that biodiversity can promote the functioning of ecosystems. Yet, it is unclear whether the positive effects of biodiversity on ecosystem functioning will persist under various types of global environmental change drivers. We conducted a meta-analysis of 46 factorial experiments manipulating both species richness and the environment to test how global change drivers (i.e. warming, drought, nutrient addition or CO2 enrichment) modulated the effect of biodiversity on multiple ecosystem functions across three taxonomic groups (microbes, phytoplankton and plants). We found that biodiversity increased ecosystem functioning in both ambient and manipulated environments, but often not to the same degree. In particular, biodiversity effects on ecosystem functioning were larger in stressful environments induced by global change drivers, indicating that high-diversity communities were more resistant to environmental change. Using a subset of studies, we also found that the positive effects of biodiversity were mainly driven by interspecific complementarity and that these effects increased over time in both ambient and manipulated environments. Our findings support biodiversity conservation as a key strategy for sustainable ecosystem management in the face of global environmental change

    Invader presence disrupts the stabilizing effect of species richness in plant community recovery after drought

    Get PDF
    Abstract Higher biodiversity can stabilize the productivity and functioning of grassland communities when subjected to extreme climatic events. The positive biodiversity–stability relationship emerges via increased resistance and/or recovery to these events. However, invader presence might disrupt this diversity–stability relationship by altering biotic interactions. Investigating such disruptions is important given that invasion by non‐native species and extreme climatic events are expected to increase in the future due to anthropogenic pressure. Here we present one of the first multisite invader × biodiversity × drought manipulation experiment to examine combined effects of biodiversity and invasion on drought resistance and recovery at three semi‐natural grassland sites across Europe. The stability of biomass production to an extreme drought manipulation (100% rainfall reduction; BE: 88 days, BG: 85 days, DE: 76 days) was quantified in field mesocosms with a richness gradient of 1, 3, and 6 species and three invasion treatments (no invader, Lupinus polyphyllus, Senecio inaequidens). Our results suggest that biodiversity stabilized community productivity by increasing the ability of native species to recover from extreme drought events. However, invader presence turned the positive and stabilizing effects of diversity on native species recovery into a neutral relationship. This effect was independent of the two invader's own capacity to recover from an extreme drought event. In summary, we found that invader presence may disrupt how native community interactions lead to stability of ecosystems in response to extreme climatic events. Consequently, the interaction of three global change drivers, climate extremes, diversity decline, and invasive species, may exacerbate their effects on ecosystem functioning

    The handbook for standardized field and laboratory measurements in terrestrial climate change experiments and observational studies (ClimEx)

    Get PDF
    Climate change is a world-wide threat to biodiversity and ecosystem structure, functioning and services. To understand the underlying drivers and mechanisms, and to predict the consequences for nature and people, we urgently need better understanding of the direction and magnitude of climate change impacts across the soil-plant-atmosphere continuum. An increasing number of climate change studies are creating new opportunities for meaningful and high-quality generalizations and improved process understanding. However, significant challenges exist related to data availability and/or compatibility across studies, compromising opportunities for data re-use, synthesis and upscaling. Many of these challenges relate to a lack of an established 'best practice' for measuring key impacts and responses. This restrains our current understanding of complex processes and mechanisms in terrestrial ecosystems related to climate change. To overcome these challenges, we collected best-practice methods emerging from major ecological research networks and experiments, as synthesized by 115 experts from across a wide range of scientific disciplines. Our handbook contains guidance on the selection of response variables for different purposes, protocols for standardized measurements of 66 such response variables and advice on data management. Specifically, we recommend a minimum subset of variables that should be collected in all climate change studies to allow data re-use and synthesis, and give guidance on additional variables critical for different types of synthesis and upscaling. The goal of this community effort is to facilitate awareness of the importance and broader application of standardized methods to promote data re-use, availability, compatibility and transparency. We envision improved research practices that will increase returns on investments in individual research projects, facilitate second-order research outputs and create opportunities for collaboration across scientific communities. Ultimately, this should significantly improve the quality and impact of the science, which is required to fulfil society's needs in a changing world.Peer reviewe

    Field experiments underestimate aboveground biomass response to drought

    Get PDF
    Researchers use both experiments and observations to study the impacts of climate change on ecosystems, but results from these contrasting approaches have not been systematically compared for droughts. Using a meta-analysis and accounting for potential confounding factors, we demonstrate that aboveground biomass responded only about half as much to experimentally imposed drought events as to natural droughts. Our findings indicate that experimental results may underestimate climate change impacts and highlight the need to integrate results across approaches
    corecore