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Abstract. Drought periods can have important impacts
on plant productivity and ecosystem functioning, but cli-
matic conditions other than the lack of precipitation during
droughts have never been quantified and have therefore not
been considered explicitly in both experimental and mod-
eling studies. Here, we identify which climatic character-
istics deviate from normal during droughts and how these
deviations could affect plant responses. Analysis of 609
years of daily data from nine Western European meteoro-
logical stations reveals that droughts in the studied region
are consistently associated with more sunshine (+45 %), in-
creased mean (+1.6◦C) and maximum (+2.8◦C) air temper-
atures and vapour pressure deficits that were 51 % higher
than under normal conditions. These deviations from nor-
mal increase significantly as droughts progress. Using the
process-model ORCHIDEE, we simulated droughts consis-
tent with the results of the dataset analysis and compared
water and carbon exchange of three different vegetation types
during such natural droughts and droughts in which only the
precipitation was affected. The comparison revealed con-
trasting responses: carbon loss was higher under natural
drought in grasslands, while increased carbon uptake was
found especially in decidious forests. This difference was
attributed to better access to water reserves in forest ecosys-
tems which prevented drought stress. This demonstrates that
the warmer and sunnier conditions naturally associated with
droughts can either improve growth or aggravate drought-
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related stress, depending on water reserves. As the impacts
of including or excluding climatic parameters that correlate
with drought are substantial, we propose that both experi-
mental and modeling efforts should take into account other
environmental factors than merely precipitation.

1 Introduction

Discrete climate events such as heat waves, droughts and
storms, can have a disproportionate impact on ecosystems
relative to the temporal scale over which they occur. A re-
cent example is the European summer heat wave of 2003,
which saw harvest losses surpass 10 billion dollars (Schär
and Jendritzky, 2004), and which, together with the high
number of premature human deaths (Vandentorren et al.,
2004) served as a catalyst for increased public, political and
scientific awareness (IPCC, 2007). Importantly, both the
frequency and the intensity of extreme events is set to in-
crease disproportionately under climate change (Meehl and
Tebaldi, 2004), a direct consequence of the nature of prob-
abilistic distributions (Scḧar et al., 2004). Research ori-
ented towards (extreme) events rather than (gradual) trends,
is therefore urgently needed (Jentsch et al., 2007). Simu-
lating and modeling extreme events as realistically as possi-
ble is essential in correctly assessing the biotic responses to
these events. Here, we assess the climatic characteristics of
(atmospheric) droughts and look into consequences for plant
systems. Droughts are reported to be increasing in frequency
and intensity (Briffa et al., 2009), and are thought to have
generally larger impacts on primary productivity than heat
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Table 1. Description of the nine weather stations from which the meteorological record was used in our analyses.

weather station country coordinates station height data series
(m above sea level)

Basel Switzerland 47◦33′ N, 7◦35′ E 316 1901–2004
De Bilt The Netherlands 52◦06′ N, 05◦11′ E 3 1906–2008
Eelde The Netherlands 53◦08′ N, 06◦35′ E 3 1957–2008
Geǹeve Switzerland 46◦15′ N, 06◦08′ E 420 1901–2004
Hannover Germany 52◦27′ N, 9◦40′ E 59 1936–2008∗

Maastricht The Netherlands 50◦55′ N, 05◦47′ E 114 1957–2008
Orléans France 47◦58′ N, 01◦45′ E 125 1973–2008
Reims France 49◦18′ N, 04◦01′ E 99 1973–2007
Saarbrcken Germany 49◦12′ N, 07◦06′ E 322 1956–2008

∗ no data recorded in 1941, 1942 and 1945.

waves (Ciais et al., 2005). Research into plant responses to
drought in ecological studies is done either by observation
studies that rely on naturally occurring droughts (Ciais et al.,
2005; Kljun et al., 2006) or by manipulation studies in which
drought is imposed experimentally (e.g. Yang et al., 2000;
Pfisterer and Schmid, 2002; da Costa et al., 2010). While
naturally occurring droughts are, by definition, realistic, im-
posed droughts may not be. Indeed, there are obviously
other factors affecting plant growth apart from water, such
as temperature and radiation. If any of these environmen-
tal variables important to plant functioning were correlated
with drought, they would need to be considered in drought
manipulation experiments and modeling. To our knowledge,
however, no attempt has been made to analyse whether such
correlations exist, apart from general probabilistic character-
isation (Serinaldi et al., 2009). Nevertheless, several stud-
ies have identified drought as an important instigator of heat
waves (Fischer et al., 2007; Jaeger and Seneviratne, 2010;
Hirschi et al., 2011). This is because the soil water sta-
tus is connected to temperature and cloud formation via en-
ergy balance processes, and it therefore seems logical that
droughts in their own right may be climatologically differ-
ent from normal, although quantification is lacking. In this
study, we first determine the average conditions during me-
teorological droughts (i.e. periods without significant precip-
itation) based on nine long term datasets throughout Western
Europe. We then use these data as input in a process model
(ORCHIDEE) to test with a simulation exercise whether sig-
nificant differences in ecosystem carbon exchange exist be-
tween droughts when taking into account or not conditions
other than lack of precipitation. In other words: how relevant
is it to consider environmental conditions other than precipi-
tation in drought research? The outcome has implications for
both modeling and experimental studies.

2 Material and methods

2.1 Historical droughts

Quality controlled and publically available observational
records (Klok and Klein-Tank, 2009) from nine Western
European weather stations were used for our analyses (Ta-
ble 1). These records contain daily minimum (Tmin), max-
imum (Tmax) and mean (Tmean) air temperatures, total sun-
shine hours, total precipitation and mean relative humidity
(RH). As a more relevant measure of air humidity for plants,
the mean daily vapour pressure deficit (VPD) was calculated
using the mean daily temperature and the mean daily rela-
tive humidity through the following standard formula (Jones,
1992):

VPD= (1−RH)×0.611e
17.502Tmean

Tmean+240.97

In ecological experiments, drought is most commonly simu-
lated by rainfall exclusion (usually by means of rainout shel-
ters). We base our definition on the aforementioned experi-
mental approach, and define drought as a number of consecu-
tive days without significant precipitation (i.e. less than 1 mm
per day, a quantity that is fully intercepted by most canopies)
of which the minimum length is determined for each weather
station separately. This station specific approach is essential
as the probabilistic distribution, which varies across stations,
determines what constitutes an extreme. For each weather
station we calculated the minimum drought length (x) based
on the condition that the ratio ofx-day running averages
equal to zero (with precipitation considered zero on a day
if it was below 1 mm, see earlier) to the total number of days
had to be equal or lower than 0.01. This choice of cut-off
ensured that we ended up with rare (i.e. extreme) events that
were still statistically workable (i.e. enough data). We only
consider the period from 15 March until 15 October as we
are most interested in droughts during the growing season
and as winter droughts are thought to be fundamentally dif-
ferent (Trenberth and Shea, 2005). Drought periods were

Biogeosciences, 8, 1121–1130, 2011 www.biogeosciences.net/8/1121/2011/



H. J. De Boeck and H. Verbeeck: Climatic conditions of droughts 1123

each attributed to the month in which the bulk of their length
was observed: a drought from 20 July until 15 August was
labeled as an August drought. Drought days before 15 March
and after 15 October were not considered.

We used SPSS 15.0 (SPSS Science, Woking, UK) for gen-
eral linear model (GLM) univariate analysis, with climato-
logical parameters (air temperatures, sunshine hours, rela-
tive humidity or vapour pressure deficit) as dependents and
weather station, month and period type (= droughts, non-
drought periods, start (first 10 days) or end (after day 10) of
droughts) as fixed factors. The Games-Howell post-hoc test
was used to separate multiple means. Data of relative hu-
midity and vapour pressure deficit were transformed (square
root, logarithmic or inverse) for normality. The significance
threshold was 0.05 throughout all analyses.

2.2 Simulation

One full year was simulated with actual half-hourly meteoro-
logical data from three experimental sites part of the ICP For-
est Level II and Fluxnet (Baldocchi et al., 2001; Gielen et al.,
2010) networks: Brasschaat, Belgium (51◦18′ N, 4◦31′ E),
Vielsalm, Belgium (50◦18′ N, 5◦59′ E) and Hesse, France
(48◦40′ N, 7◦03′ E). We used the data of 2004, as this was
an average year in terms of precipitation, temperature and
sunshine compared to the 30-yr average. A drought period
of 26 days (the average drought length across our datasets,
see later) was imposed starting 6 July (DOY 188) by setting
all precipitation in this period to zero. A precipitation event
of 17 mm of rain in 6 h (an arbitrary but actually recorded
rain event in the Brasschaat database) was introduced after 26
days, to signal the end of the drought. For each site we used
two datasets: one in which only the precipitation was altered
during drought (“precipitation only drought”), and another
in which we also adjusted minimum (09:00 p.m.–08:00 a.m.)
and maximum (08:30 a.m.–08:30 p.m.) temperatures, rela-
tive humidity and radiation, to reflect the conditions natu-
rally occurring during droughts (“natural drought”). Because
radiation measurements were not available in most long-
term datasets, we used sunshine hours instead. However,
the model requires radiation as an input. Because there is a
strong and linear relationship between sunshine hours and ra-
diation (R2 = 0.80, 28140 data points), it seems a fair approx-
imation to consider the observed increase in sunshine hours
during droughts (45 %, see later) and radiation equivalent. To
avoid unnaturally bright days by adding 45 % extra radiation
to already sunny days, we averaged all half hourly radiation
values during the drought to attain one average daily radia-
tion course, and then added 45 % to those values. The re-
sulting “average day” was found to be somewhat less bright
for every half hourly value than a fully sunny day during that
period, and can therefore be considered realistic.

We used ORCHIDEE (Krinner et al., 2005), a process-
oriented integrated global land-surface model, to run the sim-
ulations. It simulates diurnal cycles of turbulent fluxes of

CO2, water and energy, while the ecosystem carbon and
water dynamics (i.e. carbon allocation, plant respiration,
growth, mortality, soil organic matter decomposition, wa-
ter infiltration and runoff) are calculated at a daily time step.
The standard ORCHIDEE equations are given by Ducoudré
et al. (1993), Krinner at al. (2005), and Santaren et al. (2007).
As in most global biogeochemical models, Plant Functional
Types (PFTs) are used to classify vegetation at any particular
site. ORCHIDEE simulates 13 PFTs at the globe scale, with
all PFTs sharing the same equations but using different pa-
rameter values. Plant phenology is one exception, where PFT
specific equations exist (Botta et al., 2000). For this study
ORCHIDEE was run at local scale (“grid point mode”) using
the half-hourly meteorological forcing measured at the site.
In this simulation exercise we used the standard ORCHIDEE
parameterization of three PFTs that occur regularly in the re-
gion under consideration (Western Europe): C3 grassland,
temperate broadleaf deciduous forest and temperate ever-
green needle-leaf forest. We conducted a modelling exper-
iment for these 3 PFTs at each of the 3 locations, and anal-
ysed daily ORCHIDEE outputs for carbon and water fluxes.
We initialized biomass and soil carbon pools for each PFT
to equilibrium values from a 2000 yr long spin-up driven by
cycling the 10 yr available climate inputs.

Multiple interacting drought responses are modeled in
ORCHIDEE. In the first place a direct response of canopy
carbon and water exchange to meteorological drivers (tem-
perature, radiation, VPD) is modeled through the photo-
synthesis (Farquhar et al., 1980) and stomatal conductance
model (Ball et al., 1987). Secondly, simulated soil water
availability affects stomatal conductance, transpiration, pho-
tosynthesis (Verbeeck et al., 2011), carbon allocation pat-
terns (Friedlingstein et al., 1998) and heterotrophic respira-
tion in the different litter and soil organic matter pools (Krin-
ner et al., 2005). In the standard ORCHIDEE model, soil
hydrology is simulated using two reservoirs (“double bucket
model”). The soil water availability for the vegetation is cal-
culated based on an exponential root profile. The PFT spe-
cific parameter values of the above described equations in-
duce a different response to drought for each of the PFTs
used in this study (e.g. photosynthetic capacity, rooting pro-
file and allocation are different for grassland compared to
temperate deciduous forest).

The ORCHIDEE model has been tested intensively at both
site level (e.g. Krinner et al., 2005; Schwalm et al., 2010)
and continental scale (e.g. Vetter et al., 2008). Moreover, the
model has been applied and evaluated for drought events of
different scales in space and time (e.g. Ciais et al., 2005; Jung
et al., 2007; Reichstein et al., 2007; Gerten et al., 2008; Luo
et al., 2008; Vetter et al., 2008; Schwalm et al., 2010).
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Fig. 1. Meteorological data from nine weather stations throughout Western Europe (details: see Table 1). Averages± standard errors per
month from 15 March until 15 October, during (black) and outside (white) of droughts (definition: see text).(A) minimum (squares), mean
(circles) and maximum (triangles) air temperatures,(B) hours of daily sunshine,(C) daily average relative humidity,(D) calculated vapour
pressure deficit from average air temperatures and relative humidity. Points are connected for clarity.

3 Results

3.1 Historical droughts

In the records of the nine Western European weather stations
we identified a total number of 227 droughts which lasted
nearly 26 days on average, a length that was fairly constant
across stations. Minimal air temperature anomalies (calcu-
lated as1Tmin, the deviation from the averageTmin, calcu-
lated separately for each day of the year) during droughts
did generally not deviate significantly from normal (Table 2).
However, there was an interaction with month (p < 0.001),
caused by a slight positive1Tmin during summer (Fig. 1a).
Droughts were furthermore characterised by higher mean
(+1.6◦C, p < 0.001) and maximum temperatures (+2.8◦C,
p < 0.001), an increase that was observed throughout the
growing season and in all weather stations, although it fluc-
tuated between months (p < 0.001). Droughts were not only
found to be warmer than average, they were also markedly
sunnier, with 45 % more sunshine hours recorded (p < 0.001,
Fig. 1b). Relative differences (not shown) indicate that in-
creases in sunshine duration were smallest in summer, ex-
plaining the significant interaction with month (p < 0.001).
Relative humidity was reduced by on average 12 % dur-
ing droughts (p < 0.001, Fig. 1c), with the strongest de-

creases observed during late spring and early summer. Fi-
nally, droughts coincided with large increases of the average
vapour pressure deficit (+51 %,p < 0.001), with some vari-
ations between months and stations (Table 2, Fig. 1d) but
without clear trends. We tested whether drought character-
istics are similar across the full drought period, by distin-
guishing between the start of the drought (the first 10 days)
and the end of the drought (from day 11 until the first signifi-
cant precipitation event). We found, perhaps not surprisingly,
very significant effects for all tested parameters (p < 0.001
in all post-hoc tests), with the end of drought periods being
warmer, sunnier and drier than the onset (Fig. 2). This robust
trend was observed in all stations and in all months.

3.2 Simulation

Our model runs show that a natural 26-day drought had con-
sistent positive effects on the net carbon uptake in decidu-
ous broadleaf forests but negative effects in grasslands, when
compared to a precipitation only drought (Fig. 3a). Differ-
ences between both drought types were marginal in ever-
green forests. Photosynthetic uptake (GPP) was higher under
natural compared to precipitation only drought in both forest
types, but lower in grasslands (Fig. 3b). Likewise, ecosys-
tem respiration was increased in forests, but not consistently
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Table 2. Overview of meteorological conditions for all nine weather stations used in our analyses, from 15 March until 15 October. Anoma-
lies (1) during droughts were calculated for each day and then averaged: i.e. daily values (temperatures, sunshine hours, etc.) during
droughts were compared to the average (av) values (also shown) during those specific days of the year. See text for definitions.

data avTmin 1Tmin avTmean 1Tmean avTmax 1Tmax av sunshine 1 sunshine av RH 1 RH av VPD 1 VPD
(years) (◦C) (◦C) (◦C) (◦C) (◦C) (◦C) (hours day−1) (%) (%) (%) hPa (%)

Basel 104 10.2 −0.05 15.0 1.44 20.9 2.55 6.1 44.3 74.6 −10.0 4.70 42.2
De Bilt 103 8.3 0.26 13.2 1.63 18.1 2.83 5.9 43.1 77.3 −10.6 3.67 52.3
Eelde 52 8.5 0.75 13.3 2.22 18.2 3.68 6.4 50.7 82.6−13.3 3.51 62.1
Geǹeve 104 9.4 0.07 14.5 1.06 19.7 1.64 7.1 37.1 70.4−8.3 5.29 28.3
Hannover 70 8.4 −0.61 13.5 1.13 18.5 2.27 6.0 43.2 75.0 −11.8 4.21 48.2
Maastricht 52 9.6 1.14 14.1 2.94 18.9 4.40 5.3 62.8 74.0−13.1 4.54 70.3
Orléans 36 9.5 0.31 14.8 0.00 20.6 2.40 6.8 37.8 71.5−7.4 5.42 29.2
Reims 35 9.5 −0.11 15.4 1.57 21.1 2.43 6.8 37.1 73.7 −12.3 5.04 50.9
Saarbrcken 53 9.3 0.66 13.8 2.13 18.6 3.11 6.3 51.6 73.8−17.9 4.63 71.0

609 9.2 0.27 14.2 1.57 19.4 2.81 6.3 45.3 74.8 −11.6 4.56 50.5

Fig. 2. Comparison of meteorological data at nine weather stations
throughout Western Europe (details: see Table 1) the first 10 days
of a drought (definition: see text), white bars, with the period 11th
day of a drought until the drought end, black bars. The average
relative change to normal conditions (all data excluding droughts)
is depicted± standard errors.

so in grasslands (Fig. 3c). The increase in evapotranspira-
tion, in response to higher VPD and increased radiation, is
lower in grasslands than in forests (Fig. 3d), which indicates
that accessible water reserves were more plentiful in forests,
allowing plants to keep stomates open (longer). The daily
course of net carbon uptake reveals that also in grasslands,
natural droughts stimulated NEE compared to precipitation
only droughts the first few days (Fig. 4). This response was
then reversed, further hinting that grasslands suffered from
earlier depletion of water reserves than forests. Towards the
end of the drought, forests also exhibited a reversed response,
signaling that conditions in natural droughts were gradually
turning less favourable than in precipitation only droughts.

4 Discussion

4.1 Meteorological conditions

Droughts are gradual events that build up over the course of
weeks or months and can be accelerated by high tempera-
tures (De Boeck et al., 2011), as is sometimes expressed by
using the Palmer Drought Severity Index (e.g. Briffa et al.,
2009). Here, we focused on droughts like they are usually
considered in experimental and modeling studies, namely
those periods that lack significant precipitation. Our analysis
of nine long-term meteorological databases showed that such
drought periods, at least in Western Europe, are typically
also warm and sunny and encompass higher-than-average
demands on transpiration. This was observed throughout
the growing season, although deviations from normal con-
ditions were more pronounced in some months. We believe
that the general meteorological characteristics of droughts
reported here will be upheld even if the definition would
change to include processes on longer timescales (i.e. less
distinct periods). As a test, we compared conditions from
15 March–15 October 2003 to normal, and found also here
more sunshine, higher temperatures, lower RH and higher
VPD, although the anomalies where less outspoken than
for the precipitation-free droughts focused on here (data not
shown). Warm, sunny and dry conditions also prevailed dur-
ing heat waves in the same region (De Boeck et al., 2010).
This is consistent with a global study by Trenberth and Shea
(2005), in which they reported that temperature and pre-
cipitation generally co-vary positively in winter and nega-
tively in summer, and should therefore not be interpreted as
stand-alone parameters. At the basis are fairly simple phys-
ical laws: dry soils cause more energy dissipation in the
form of sensible heat, which generally leads to less convec-
tive cloud formation, resulting in more sunshine and conse-
quently higher daytime temperatures which in turn accelerate
soil drying (Vautard et al., 2007; Fischer et al., 2007b). The
same cascade also explains why droughts get progressively
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Fig. 3. Results from the ORCHIDEE model runs of carbon and water fluxes:(A) net ecosystem exchange,(B) gross primary production and
(C) ecosystem respiration, and(D) evapotranspiration. Output for different plant functional types in three Fluxnet sites: differences shown
between ‘natural drought’ and ‘precipitation only drought’ across the entire year (2004). See text for details.

warmer and sunnier, as we demonstrated. Our finding in a
previous study (De Boeck et al., 2010) that heat waves are
characterised by significantly less (−78 %) precipitation than
normal and that they most often occur after a period of sub-
standard rainfall should be regarded in the same light. New
model simulations reinforce the notion of a slow build-up of
heat via drought, with heat waves projected to become more
intense at the end of summer through progressive soil mois-
ture depletion effects (Fischer and Schär, 2009). Conil et
al. (2009) argue that soil moisture data can therefore be used
to improve seasonal climate forecasts.

4.2 Plant responses

With a widely used process model we tested whether taking
into account the conditions we found to be naturally associ-
ated with droughts could significantly affect plant carbon and
water fluxes. This is an important consideration, as correla-
tions between precipitation-free periods and sunshine, tem-
perature and relative humidity – all variables important to
plant growth and ecosystem functioning – have never been
quantified previously. As a consequence, they are not ex-
plicitly considered in drought simulation, both experimen-
tally and in models. The results from the ORCHIDEE model
runs suggest that natural droughts increased net carbon up-
take substantially in deciduous forests, marginally in ever-
green forests and led to a net loss of carbon in grasslands
when compared to droughts with no changes in environ-

mental conditions other than precipitation. Natural drought
conditions also gave rise to important evapotranspiration in-
creases, likely mostly in response to the 50 % higher VPD
(Beer et al., 2007). This implies that ecosystems become
more vulnerable to recurrent droughts, and that the depletion
of water reserves may be underestimated by using the pre-
cipitation only approach to droughts. The generally shallow-
rooted grasslands only very briefly (days) responded pos-
itively to natural droughts, whereas this positive response
lasted much longer (weeks) in forests. This implies that trees
could largely avoid drought stress by tapping into deeper soil
water reserves (Zeng, 2001), which is captured by the model
via PFT specific rooting profiles (Krinner et al., 2005). In
addition, forests have other mechanisms to overcome dry pe-
riods which are not included in the model simulations: e.g.
stem storage water use (Verbeeck et al., 2007) or hydraulic
lift (Caldwell et al., 1998). These findings are in agreement
with an analysis of flux tower measurements across Europe
by Teuling et al. (2010), which concluded that grasslands use
up the available water significantly faster than forests in case
of drought.

Our modelling results support the hypothesis that, as long
as plants have adequate water supply, the conditions dur-
ing natural droughts are generally more favourable than av-
erage, at least in temperate systems: (i) increased radia-
tion generally stimulates photosynthesis, and (ii) higher day-
time temperatures and more sunshine could raise leaf tem-
peratures closer to metabolic optima (Larcher, 2003), which
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Fig. 4. Yearly course of net ecosystem exchange for three different plant functional types modeled with ORCHIDEE: differences between
“natural drought” and “precipitation only drought” for the modelling experiment using the meteorological data of the Vielsalm site. Drought
period (day 188–213) indicated.

is especially probable during spring and autumn, while in-
creased transpiration (a consequence of higher VPD and radi-
ation) would largely avoid high air temperature from leading
to heat stress (through high leaf temperature) in summer (De
Boeck et al., 2011). The model outputs indeed revealed in-
creased net carbon uptake in summer under natural droughts
until water reserves were depleted (Fig. 4), while an observa-
tional study by Delpierre et al. (2009) showed that gross pri-
mary productivity during the long 2007 spring drought was
the maximum ever recorded for that period in Europe. Pos-
itive responses may be somewhat less distinct in autumn, as
warming has been reported to stimulate respiration more than
photosynthesis in this season (Piao et al., 2008).

If, on the other hand, the water reserves have been depleted
or cannot be reached, the environmental conditions preva-
lent during natural droughts could serve as stress-amplifiers:
(i) stomatal closure as a response to soil drought and high
VPDs would increase leaf temperatures and may lead to
heat stress (De Boeck et al., 2011), especially in combina-
tion with high radiation and increased maximum tempera-
tures, (ii) high-light stress may be exacerbated by drought
(Chaves et al., 2003) resulting in photoinhibitation and in ex-
treme cases even photodamage (Larcher, 2003), and (iii) in-
creased temperatures, radiation and VPD could speed up the
drought by increasing evapotranspiration (cf. De Boeck et
al., 2011). Indeed, the water-limited grasslands in our sim-
ulation responded more negatively to natural than to precip-
itation only drought, while both forest types exhibited the
opposite response as they were not (yet) limited by water.
This illustrates that, depending on the water status, the con-
ditions during natural droughts serve as a catalyst for either
positive or negative effects on plant growth. It is worth not-
ing that forests too appeared to start experiencing the neg-
ative effects of natural droughts towards the end of the 26-
day drought. Forests may therefore be primarily sensitive to

either very long droughts or repeated droughts that gradu-
ally deplete even the deep soil water reserves (such as hap-
pened in the 2003 European drought). Negative effects in
temperate forests would therefore be concentrated at the end
of summer (Granier et al., 2007), while grasslands could be
affected by droughts throughout the growing season. Diverg-
ing responses may not be restricted only to ecosystem types
(Teuling et al., 2010) but could also occur within the ecosys-
tem itself as some plants’ root systems are deeper and can tap
into the water table during droughts while shallower rooted
species are already experiencing drought stress (Padilla and
Pugnaire, 2007; Gilgen et al., 2010). In combination with the
catalysing properties of natural droughts, this suggests that
the competitive differences between species during droughts
may have been underestimated in experiments and models
thus far.

We propose that our results should be considered in both
modeling and experimental studies. Models could fairly
easily incorporate drought-related environmental conditions.
This is already implicitly included in models that base con-
ditions on stochastic weather generators, because these cre-
ate synthetic series of daily weather from historical data in-
tended to be similar to those observed in historical weather
(e.g. Apipattanavis et al., 2010). Experiments could explic-
itly mimic natural drought conditions by means of infrared
heaters, which both increase leaf temperatures and vapour
pressure differences (Kimball, 2005; De Boeck et al., 2010),
and solar lamps (cf. Deckmyn et al., 1994). Unfortunately,
these techniques are currently only suited for small-statured
systems. Otherwise, any drought experiment should avoid
as much as possible light attenuation (Svejcar et al., 1999;
Charles and Dukes, 2009), increased relative humidity (Beier
et al., 2004) and night-time warming (Lucas et al., 2008;
Charles and Dukes, 2009), for example by using retractable
rainout shelters (Beier et al., 2004).
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5 Conclusions

Using long-term observational records, we have shown that
precipitation-free periods throughout Western Europe are as-
sociated with notable changes in sunshine duration (+45 %),
mean (+1.6◦C) and maximum (+2.8◦C) air temperatures
and demands on transpiration (VPD +51 %), and that these
changes are exacerbated as the drought progresses. Model
runs based on these data suggest that such natural droughts
could either stimulate growth or suppress it compared to pre-
cipitation only droughts, depending on the plants’ access to
water reserves. This can have profound implications on the
outcome of drought studies, and we suggest that new re-
search efforts on drought impacts, both experimental and
modeled, will provide more realistic and relevant results if
they incorporate such naturally occurring conditions. Finally,
droughts and their characteristics may vary in different geo-
graphical areas, and assessments such as this should there-
fore be made for each region separately.
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