56 research outputs found
Modelling environmental influences on calving at Helheim Glacier in eastern Greenland
Calving is an important mass-loss process for many glaciers worldwide, and
has been assumed to respond to a variety of environmental influences. We
present a grounded, flowline tidewater glacier model using a physically-based
calving mechanism, applied to Helheim Glacier, eastern
Greenland. By qualitatively examining both modelled size and frequency of
calving events, and the subsequent dynamic response, the model is found to
realistically reproduce key aspects of observed calving behaviour. Experiments explore four
environmental variables which have been suggested to affect calving rates:
water depth in crevasses, basal water pressure, undercutting of the calving
face by submarine melt and backstress from ice mélange. Of the four
variables, only crevasse water depth and basal water pressure were found to
have a significant effect on terminus behaviour when applied at a realistic
magnitude. These results are in contrast to previous modelling studies, which
have suggested that ocean temperatures could strongly influence the calving
front. The results raise the possibility that Greenland outlet glaciers could
respond to the recent trend of
increased surface melt observed in Greenland more strongly than previously thought, as surface ablation can
strongly affect water depth in crevasses and water pressure at the glacier
bed
Immigració i integració
Abstract not availabl
Effects of undercutting and sliding on calving: a global approach applied to Kronebreen, Svalbard
In this paper, we study the effects of basal friction, sub-aqueous
undercutting and glacier geometry on the calving process by combining six
different models in an offline-coupled workflow: a continuum–mechanical ice
flow model (Elmer/Ice), a climatic mass balance model, a simple subglacial
hydrology model, a plume model, an undercutting model and a discrete particle
model to investigate fracture dynamics (Helsinki Discrete Element Model,
HiDEM). We demonstrate the feasibility of reproducing the observed calving
retreat at the front of Kronebreen, a tidewater glacier in Svalbard, during a
melt season by using the output from the first five models as input to HiDEM.
Basal sliding and glacier motion are addressed using Elmer/Ice, while calving
is modelled by HiDEM. A hydrology model calculates subglacial drainage paths
and indicates two main outlets with different discharges. Depending on the
discharge, the plume model computes frontal melt rates, which are iteratively
projected to the actual front of the glacier at subglacial discharge
locations. This produces undercutting of different sizes, as melt is
concentrated close to the surface for high discharge and is more diffuse for
low discharge. By testing different configurations, we show that undercutting
plays a key role in glacier retreat and is necessary to reproduce observed
retreat in the vicinity of the discharge locations during the melting season.
Calving rates are also influenced by basal friction, through its effects on
near-terminus strain rates and ice velocity
Increasing numerical stability of mountain valley glacier simulations: implementation and testing of free-surface stabilization in Elmer/Ice
This paper concerns a numerical stabilization method for free-surface ice flow called the free-surface stabilization algorithm (FSSA). In the current study, the FSSA is implemented into the numerical ice-flow software Elmer/Ice and tested on synthetic two-dimensional (2D) glaciers, as well as on the real-world glacier of Midtre Lovénbreen, Svalbard. For the synthetic 2D cases it is found that the FSSA method increases the largest stable time-step size at least by a factor of 5 for the case of a gently sloping ice surface (∼ 3°) and by at least a factor of 2 for cases of moderately to steeply inclined surfaces (∼ 6° to 12°) on a fine mesh. Compared with other means of stabilization, the FSSA is the only one in this study that increases largest stable time-step sizes when used alone. Furthermore, the FSSA method increases the overall accuracy for all surface slopes. The largest stable time-step size is found to be smallest for the case of a low sloping surface, despite having overall smaller velocities. For an Arctic-type glacier, Midtre Lovénbreen, the FSSA method doubles the largest stable time-step size; however, the accuracy is in this case slightly lowered in the deeper parts of the glacier, while it increases near edges. The implication is that the non-FSSA method might be more accurate at predicting glacier thinning, while the FSSA method is more suitable for predicting future glacier extent. A possible application of the larger time-step sizes allowed for by the FSSA is for spin-up simulations, where relatively fast-changing climate data can be incorporated on short timescales, while the slow-changing velocity field is updated over larger timescales.</p
Subglacial hydrology from high-resolution ice-flow simulations of the Rhine Glacier during the Last Glacial Maximum: a proxy for glacial erosion
At the Last Glacial Maximum (LGM), the Rhine Glacier complex (Rhine and Linth
glaciers) formed large piedmont lobes extending north into the Swiss and
German Alpine forelands. Numerous overdeepened valleys there were formed by
repeated glaciations. A characteristic of these overdeepened valleys is their location close to the LGM ice margin, away from the Alps. Numerical models of ice flow of the Rhine Glacier indicate a poor fit between the sliding distance, a proxy for glacial erosion, and the location
of these overdeepenings. Calculations of the hydraulic potential based on
the computed time-dependent ice surface elevations of the Rhine Glacier lobe obtained from a high-resolution thermo-mechanically coupled Stokes flow model are used to estimate the location of subglacial water drainage routes. Results indicate that the subglacial water discharge is high and focused along glacial valleys and overdeepenings when water pressure is equal to the ice overburden pressure. These conditions are necessary for subglacial water to remove basal sediments, expose fresh bedrock, and favor further erosion by quarrying and abrasion. Knowledge of the location of paleo-subglacial water drainage routes may be useful to understand patterns of subglacial erosion beneath paleo-ice masses that do not otherwise relate to the sliding of ice. Comparison of the erosion pattern from
subglacial meltwater with those from quarrying and abrasion shows the
importance of subglacial water flow in the formation of distal
overdeepenings in the Swiss lowlands.</p
Coupling of ice-shelf melting and buttressing is a key process in ice-sheets dynamics
Increase in ice-shelf melting is generally presumed to have triggered recent coastal ice-sheet thinning. Using a full-Stokes finite element model which includes a proper description of the grounding line dynamics, we investigate the impact of melting below ice shelves. We argue that the influence of ice-shelf melting on the ice-sheet dynamics induces a complex response, and the first naive view that melting inevitably leads to loss of grounded ice is erroneous. We demonstrate that melting acts directly on the magnitude of the buttressing force by modifying both the area experiencing lateral resistance and the ice-shelf velocity, indicating that the decrease of back stress imposed by the ice-shelf is the prevailing cause of inland dynamical thinning. We further show that feedback from melting and buttressing forces can lead to nontrivial results, as an increase in the average melt rate may lead to inland ice thickening and grounding line advance. Citation: Gagliardini, O., G. Durand, T. Zwinger, R. C. A. Hindmarsh, and E. Le Meur (2010), Coupling of ice-shelf melting and buttressing is a key process in ice-sheets dynamics, Geophys. Res. Lett., 37, L14501, doi:10.1029/2010GL043334
The EuroHPC Center of Excellence for Exascale in Solid Earth
The second phase (2023-2026) of the Center of Excellence for Exascale in Solid Earth (ChEESE-2P), funded by HORIZON-EUROHPC-JU-2021-COE-01 under the Grant Agreement No 101093038, will prepare 11 European flagship codes from different geoscience domains (computational seismology, magnetohydrodynamics, physical volcanology, tsunamis, geodynamics, and glacier hazards). Codes will be optimised in terms of performance on different types of accelerators, scalability, containerisation, and continuous deployment and portability across tier-0/tier-1 European systems as well as on novel hardware architectures emerging from the EuroHPC Pilots (EuPEX/OpenSequana and EuPilot/RISC-V) by co-designing with mini-apps. Flagship codes and workflows will be combined to farm a new generation of 9 Pilot Demonstrators (PDs) and 15 related Simulation Cases (SCs) representing capability and capacity computational challenges selected based on their scientific importance, social relevance, or urgency. The SCs will produce relevant EOSC-enabled datasets and enable services on aspects of geohazards like urgent computing, early warning forecast, hazard assessment, or fostering an emergency access mode in EuroHPC systems for geohazardous events including access policy recommendations. Finally, ChEESE-2P will liaise, align, and synergise with other domain-specific European projects on digital twins and longer-term mission-like initiatives like Destination Earth.
How to cite: Folch, A., DelaPuente, J., Costa, A., Halldórson, B., Gracia, J., Lanucara, P., Bader, M., Gabriel, A.-A., MacÃas, J., Lovholt, F., Montellier, V., Fournier, A., Raffin, E., Zwinger, T., Denamiel, C., Kaus, B., and le Pourhiet, L.: The EuroHPC Center of Excellence for Exascale in Solid Earth, EGU General Assembly 2023, Vienna, Austria, 24¿28 Apr 2023, EGU23-5807, https://doi.org/10.5194/egusphere-egu23-5807, 2023
Recommended from our members
A Full-Stokes 3-D Calving Model Applied to a Large Greenlandic Glacier
Iceberg calving accounts for around half of all mass loss from both the Greenland and Antarctic ice sheets. The diverse nature of calving and its complex links to both internal dynamics and climate make it challenging to incorporate into models of glaciers and ice sheets. Here, we present results from a new open-source 3D full-Stokes calving model developed in Elmer/Ice. The calving model implements the crevasse depth criterion, which states that calving occurs when surface and basal crevasses penetrate the full thickness of the glacier. The model also implements a new 3D rediscretization approach and a time-evolution scheme which allow the calving front to evolve realistically through time. We test the model in an application to Store Glacier, one of the largest outlet glaciers in West Greenland, and find that it realistically simulates the seasonal advance and retreat when two principal environmental forcings are applied. These forcings are 1) submarine melting in distributed and concentrated forms, and 2) ice mélange buttressing. We find that ice mélange buttressing is primarily responsible for Store Glacier’s seasonal advance and retreat. Distributed submarine melting prevents the glacier from forming a permanent floating tongue, while concentrated plume melting has a disproportionately large and potentially destabilizing effect on the calving front position. Our results also highlight the importance of basal topography, which exerts significant control on calving, explaining why Store Glacier has remained stable during a period when neighboring glaciers underwent prolonged interannual retreat
Basal conditions at Engabreen, Norway, inferred from surface measurements and inverse modelling
Engabreen is an outlet glacier of the Svartisen Ice Cap located in Northern Norway. It is a unique glacier due to the Svartisen Subglacial Laboratory which allows direct access to the glacier bed. In this study, we combine both sub- and supraglacial observations with ice-flow modelling in order to investigate conditions at the bed of Engabreen both spatially and temporally. We use the full-Stokes model Elmer/Ice and satellite-based surface-velocity maps from 2010 and 2014 to infer patterns of basal friction. Direct measurements of basal sliding and deformation of lower layers of the ice are used to adjust the ice viscosity and provide essential input to the setup of our model and influence the interpretation of the results. We find a clear seasonal cycle in the subglacial conditions at the higher elevation region of the study area and discuss this in relation to the subglacial hydrological system. Our results also reveal an area with an overdeepening where basal friction is significantly lower than elsewhere on the glacier all year round. We attribute this to either water pooling at the base, or saturated sediments and increased strain heating at this location which softens the ice further
- …