10 research outputs found

    Epidemic Model with Isolation in Multilayer Networks

    Get PDF
    The Susceptible-Infected-Recovered (SIR) model has successfully mimicked the propagation of such airborne diseases as influenza A (H1N1). Although the SIR model has recently been studied in a multilayer networks configuration, in almost all the research the isolation of infected individuals is disregarded. Hence we focus our study in an epidemic model in a two-layer network, and we use an isolation parameter to measure the effect of isolating infected individuals from both layers during an isolation period. We call this process the Susceptible-Infected-Isolated-Recovered (SIIRSI_IR) model. The isolation reduces the transmission of the disease because the time in which infection can spread is reduced. In this scenario we find that the epidemic threshold increases with the isolation period and the isolation parameter. When the isolation period is maximum there is a threshold for the isolation parameter above which the disease never becomes an epidemic. We also find that epidemic models, like SIRSIR overestimate the theoretical risk of infection. Finally, our model may provide a foundation for future research to study the temporal evolution of the disease calibrating our model with real data.Comment: 18 pages, 5 figures.Accepted in Scientific Report

    Epidemic model with isolation in multilayer networks

    Get PDF
    The Susceptible-Infected-Recovered (SIR) model has successfully mimicked the propagation of such airborne diseases as influenza A (H1N1). Although the SIR model has recently been studied in a multilayer networks configuration, in almost all the research the isolation of infected individuals is disregarded. Hence we focus our study in an epidemic model in a two-layer network and we use an isolation parameter w to measure the effect of quarantining infected individuals from both layers during an isolation period tw. We call this process the Susceptible-Infected-Isolated-Recovered (SIIR) model. Using the framework of link percolation we find that isolation increases the critical epidemic threshold of the disease because the time in which infection can spread is reduced. In this scenario we find that this threshold increases with w and tw. When the isolation period is maximum there is a critical threshold for w above which the disease never becomes an epidemic. We simulate the process and find an excellent agreement with the theoretical results.We thank the NSF (grants CMMI 1125290 and CHE-1213217) and the Keck Foundation for financial support. LGAZ and LAB wish to thank to UNMdP and FONCyT (Pict 0429/2013) for financial support. (CMMI 1125290 - NSF; CHE-1213217 - NSF; Keck Foundation; UNMdP; Pict 0429/2013 - FONCyT)Published versio

    Interacting social processes on interconnected networks

    Get PDF
    We propose and study a model for the interplay between two different dynamical processes --one for opinion formation and the other for decision making-- on two interconnected networks AA and BB. The opinion dynamics on network AA corresponds to that of the M-model, where the state of each agent can take one of four possible values (S=2,1,1,2S=-2,-1,1,2), describing its level of agreement on a given issue. The likelihood to become an extremist (S=±2S=\pm 2) or a moderate (S=±1S=\pm 1) is controlled by a reinforcement parameter r0r \ge 0. The decision making dynamics on network BB is akin to that of the Abrams-Strogatz model, where agents can be either in favor (S=+1S=+1) or against (S=1S=-1) the issue. The probability that an agent changes its state is proportional to the fraction of neighbors that hold the opposite state raised to a power β\beta. Starting from a polarized case scenario in which all agents of network AA hold positive orientations while all agents of network BB have a negative orientation, we explore the conditions under which one of the dynamics prevails over the other, imposing its initial orientation. We find that, for a given value of β\beta, the two-network system reaches a consensus in the positive state (initial state of network AA) when the reinforcement overcomes a crossover value r(β)r^*(\beta), while a negative consensus happens for r<r(β)r<r^*(\beta). In the rβr-\beta phase space, the system displays a transition at a critical threshold βc\beta_c, from a coexistence of both orientations for β<βc\beta<\beta_c to a dominance of one orientation for β>βc\beta>\beta_c. We develop an analytical mean-field approach that gives an insight into these regimes and shows that both dynamics are equivalent along the crossover line (r,β)(r^*,\beta^*).Comment: 25 pages, 6 figure

    Epidemic spreading in multiplex networks influenced by opinion exchanges on vaccination.

    Get PDF
    Through years, the use of vaccines has always been a controversial issue. People in a society may have different opinions about how beneficial the vaccines are and as a consequence some of those individuals decide to vaccinate or not themselves and their relatives. This attitude in face of vaccines has clear consequences in the spread of diseases and their transformation in epidemics. Motivated by this scenario, we study, in a simultaneous way, the changes of opinions about vaccination together with the evolution of a disease. In our model we consider a multiplex network consisting of two layers. One of the layers corresponds to a social network where people share their opinions and influence others opinions. The social model that rules the dynamic is the M-model, which takes into account two different processes that occurs in a society: persuasion and compromise. This two processes are related through a parameter r, r 1 the society tends to have extremist opinions, while r = 1 represents a neutral society. This social network may be of real or virtual contacts. On the other hand, the second layer corresponds to a network of physical contacts where the disease spreading is described by the SIR-Model. In this model the individuals may be in one of the following four states: Susceptible (S), Infected(I), Recovered (R) or Vaccinated (V). A Susceptible individual can: i) get vaccinated, if his opinion in the other layer is totally in favor of the vaccine, ii) get infected, with probability β if he is in contact with an infected neighbor. Those I individuals recover after a certain period tr = 6. Vaccinated individuals have an extremist positive opinion that does not change. We consider that the vaccine has a certain effectiveness ω and as a consequence vaccinated nodes can be infected with probability β(1 - ω) if they are in contact with an infected neighbor. In this case, if the infection process is successful, the new infected individual changes his opinion from extremist positive to totally against the vaccine. We find that depending on the trend in the opinion of the society, which depends on r, different behaviors in the spread of the epidemic occurs. An epidemic threshold was found, in which below β* and above ω* the diseases never becomes an epidemic, and it varies with the opinion parameter r

    Safety of hospital discharge before return of bowel function after elective colorectal surgery

    No full text
    Background: Ileus is common after colorectal surgery and is associated with an increased risk of postoperative complications. Identifying features of normal bowel recovery and the appropriateness for hospital discharge is challenging. This study explored the safety of hospital discharge before the return of bowel function.Methods: A prospective, multicentre cohort study was undertaken across an international collaborative network. Adult patients undergoing elective colorectal resection between January and April 2018 were included. The main outcome of interest was readmission to hospital within 30 days of surgery. The impact of discharge timing according to the return of bowel function was explored using multivariable regression analysis. Other outcomes were postoperative complications within 30 days of surgery, measured using the Clavien-Dindo classification system.Results: A total of 3288 patients were included in the analysis, of whom 301 (9.2 per cent) were discharged before the return of bowel function. The median duration of hospital stay for patients discharged before and after return of bowel function was 5 (i.q.r. 4-7) and 7 (6-8) days respectively (P &lt; 0.001). There were no significant differences in rates of readmission between these groups (6.6 versus 8.0 per cent; P = 0.499), and this remained the case after multivariable adjustment for baseline differences (odds ratio 0.90, 95 per cent c.i. 0.55 to 1.46; P = 0.659). Rates of postoperative complications were also similar in those discharged before versus after return of bowel function (minor: 34.7 versus 39.5 per cent; major 3.3 versus 3.4 per cent; P = 0.110).Conclusion: Discharge before return of bowel function after elective colorectal surgery appears to be safe in appropriately selected patients

    Timing of nasogastric tube insertion and the risk of postoperative pneumonia: an international, prospective cohort study

    No full text
    Aim: Aspiration is a common cause of pneumonia in patients with postoperative ileus. Insertion of a nasogastric tube (NGT) is often performed, but this can be distressing. The aim of this study was to determine whether the timing of NGT insertion after surgery (before versus after vomiting) was associated with reduced rates of pneumonia in patients undergoing elective colorectal surgery. Method: This was a preplanned secondary analysis of a multicentre, prospective cohort study. Patients undergoing elective colorectal surgery between January 2018 and April 2018 were eligible. Those receiving a NGT were divided into three groups, based on the timing of the insertion: routine NGT (inserted at the time of surgery), prophylactic NGT (inserted after surgery but before vomiting) and reactive NGT (inserted after surgery and after vomiting). The primary outcome was the development of pneumonia within 30&nbsp;days of surgery, which was compared between the prophylactic and reactive NGT groups using multivariable regression analysis. Results: A total of 4715 patients were included in the analysis and 1536 (32.6%) received a NGT. These were classified as routine in 926 (60.3%), reactive in 461 (30.0%) and prophylactic in 149 (9.7%). Two hundred patients (4.2%) developed pneumonia (no NGT 2.7%; routine NGT 5.2%; reactive NGT 10.6%; prophylactic NGT 11.4%). After adjustment for confounding factors, no significant difference in pneumonia rates was detected between the prophylactic and reactive NGT groups (odds ratio 1.03, 95% CI 0.56\u20131.87, P&nbsp;=&nbsp;0.932). Conclusion: In patients who required the insertion of a NGT after surgery, prophylactic insertion was not associated with fewer cases of pneumonia within 30&nbsp;days of surgery compared with reactive insertion

    Timing of nasogastric tube insertion and the risk of postoperative pneumonia: an international, prospective cohort study

    No full text
    Aim: Aspiration is a common cause of pneumonia in patients with postoperative ileus. Insertion of a nasogastric tube (NGT) is often performed, but this can be distressing. The aim of this study was to determine whether the timing of NGT insertion after surgery (before versus after vomiting) was associated with reduced rates of pneumonia in patients undergoing elective colorectal surgery. Method: This was a preplanned secondary analysis of a multicentre, prospective cohort study. Patients undergoing elective colorectal surgery between January 2018 and April 2018 were eligible. Those receiving a NGT were divided into three groups, based on the timing of the insertion: routine NGT (inserted at the time of surgery), prophylactic NGT (inserted after surgery but before vomiting) and reactive NGT (inserted after surgery and after vomiting). The primary outcome was the development of pneumonia within 30 days of surgery, which was compared between the prophylactic and reactive NGT groups using multivariable regression analysis. Results: A total of 4715 patients were included in the analysis and 1536 (32.6%) received a NGT. These were classified as routine in 926 (60.3%), reactive in 461 (30.0%) and prophylactic in 149 (9.7%). Two hundred patients (4.2%) developed pneumonia (no NGT 2.7%; routine NGT 5.2%; reactive NGT 10.6%; prophylactic NGT 11.4%). After adjustment for confounding factors, no significant difference in pneumonia rates was detected between the prophylactic and reactive NGT groups (odds ratio 1.03, 95% CI 0.56–1.87, P = 0.932). Conclusion: In patients who required the insertion of a NGT after surgery, prophylactic insertion was not associated with fewer cases of pneumonia within 30 days of surgery compared with reactive insertion
    corecore