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Epidemic Model with Isolation in 
Multilayer Networks
L. G. Alvarez Zuzek1, H. E. Stanley2 & L. A. Braunstein1,2

The Susceptible-Infected-Recovered (SIR) model has successfully mimicked the propagation of such 
airborne diseases as influenza A (H1N1). Although the SIR model has recently been studied in a 
multilayer networks configuration, in almost all the research the isolation of infected individuals is 
disregarded. Hence we focus our study in an epidemic model in a two-layer network, and we use an 
isolation parameter w to measure the effect of quarantining infected individuals from both layers 
during an isolation period tw. We call this process the Susceptible-Infected-Isolated-Recovered (SIIR) 
model. Using the framework of link percolation we find that isolation increases the critical epidemic 
threshold of the disease because the time in which infection can spread is reduced. In this scenario 
we find that this threshold increases with w and tw. When the isolation period is maximum there is a 
critical threshold for w above which the disease never becomes an epidemic. We simulate the process 
and find an excellent agreement with the theoretical results.

Most real-world systems can be modeled as complex networks in which nodes represent such entities 
as individuals, companies, or computers and links represent the interactions between them. In recent 
decades researchers have focused on the topology of these networks1. Most recently this focus has been 
on the processes that spread across networks, e.g., synchronization2,3, diffusion4, percolation5–8, or the 
propagation of epidemics9–17. Epidemic spreading models have been particularly successfully in explain-
ing the propagation of diseases and thereby have allowed the development of mitigation strategies for 
decreasing the impact of diseases on healthy populations.

A commonly-used model for reproducing disease spreading dynamics in networks is the 
susceptible-infected-recovered (SIR) model18,19. It has been used to model such diseases as seasonal influ-
enza, such as the SARS20. This model groups the population of individuals to be studied into three com-
partments according to their state: the susceptible (S), the infected (I), and the recovered (R). When a 
susceptible node comes in contact with an infected node it becomes infected with an intrinsic probability 
β and after a period of time tr it recovers and becomes immune. When the parameters β and tr are made 
constant, the effective probability of infection is given by the transmissibility T 1 1 trβ= − ( − )  5,21.

As infected individuals cannot be reinfected, the SIR model has a tree-like structure with branches of 
infection that develop and expand. Because in its final state this process can be mapped into link perco-
lation7,22, we use a generating function to describe it. In this framework, the most important magnitude 
is the probability f that a branch of infection will expand throughout the network1,22. When a branch of 
infection reaches a node with k connections across one of its links, it can only expand through its k −  1 
remaining connections. It can be shown that f verifies the self-consistent equation f =  1 −  G1(1 −  Tf), 
where G x kP k k xk k

k k
1

1
min

max( ) = ∑ ( )/=
−  is the generating function of the underlying branching process7. 

Note that G1(x) here represents the probability that the branches of infection will not expand throughout 
the network. At the final state of this process, the branches of infection contribute to a spanning cluster 
of recovered, previously infected individuals. Thus the probability of selecting a random node that 
belongs to the spanning cluster is given by R =  1 −  G0(1 −  Tf), where G P k xk k

k k
0 min

max= ∑ ( )=
 is the gener-

ating function of the degree distribution. When T ≤  Tc there is an epidemic-free phase with only small 

1Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, 
Instituto de Investigaciones Físicas de Mar del Plata (IFIMAR-CONICET), Deán Funes 3350, 7600 Mar del Plata, 
Argentina. 2Center for Polymer Studies, Boston University, Boston, Massachusetts 02215, USA. Correspondence 
and requests for materials should be addressed to L.G.A.Z. (email: lgalvere@mdp.edu.ar)

Received: 27 January 2015

Accepted: 11 June 2015

Published: 15 July 2015

OPEN

CORE Metadata, citation and similar papers at core.ac.uk

Provided by CONICET Digital

https://core.ac.uk/display/80358981?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:lgalvere@mdp.edu.ar


www.nature.com/scientificreports/

2Scientific RepoRts | 5:12151 | DOi: 10.1038/srep12151

outbreaks, which correspond to finite cluster in link percolation theory. But, when T >  Tc an epidemic 
phase develops. In isolated networks the epidemic threshold is given by Tc =  1/(κ −  1), where κ is the 
branching factor that is a measure of the heterogeneity of the network. The branching factor is defined 
as κ ≡ 〈 k2〉 /〈 k〉 , where 〈 k2〉  and 〈 k〉  are the second and first moment of the degree distribution, 
respectively.

Because real-world networks are not isolated, in recent years scientific researchers have focused their 
attention on multilayer networks, i.e., on “networks of networks”23–36. In multilayer networks, individ-
uals can be actors on different layers with different contacts in each layer. This is not necessarily the 
case in interacting networks. Dickinson et al.37 studied numerically the SIR model in two networks that 
interact through inter-layer connections given by a degree distribution. There is a probability that these 
inter-layer connections will allow infection to spread between nodes in different layers. They found that, 
depending on the average degree of the inter-layer connections, one layer can be in an epidemic-free 
phase and the other in an epidemic phase. Yagan et al.38 studied the SIR model in two multilayer net-
works in which all the individuals act in both layers. In their model the transmissibility is different in 
each network because one represents the virtual contact network and the other the real contact network. 
They found that the multilayer structure and the presence of the actors in both layers make the propaga-
tion process more efficient and thus increase the theoretical risk of infection above that found in isolated 
networks. This can have catastrophic consequences for the healthy population. Sanz et al.16 studied the 
spreading dynamics and the temporal evolution of two concurrent diseases that interact with each other 
in a two-layer network system, for different epidemic models. In particular, they found that for the SIR 
in the final state this interaction can determinate the values of the epidemic threshold of one of the 
diseases whose dynamic has been modified by the presence of the other disease. Buono et al.39 studied 
the SIR model, with β and tr constant, in a system composed of two overlapping layers in which only a 
fraction q of individuals can act in both layers. In their model, the two layers represent contact networks 
in which only the overlapping nodes enable the propagation, and thus the transmissibility T is the same 
in both layers. They found that decreasing the overlap decreases the transmissibility compared to when 
there is a full overlap (q =  1).

All of the above research assumes that individuals, independent of their state, will continue acting 
in many layers. In a real-world scenario, however, an infected individual may be isolated for a period of 
time and thus may not be able to act in other layers, e.g., for a period of time they may not be able to 
go to work or visit friends and may have to stay at home or be hospitalized. Thus the propagation of the 
disease is reduced. This scenario is more realistic than the one in which an actor continues to participate 
in all layers irrespective of their state38,39. As we will demonstrate, with our approach the critical proba-
bility of infection is higher than the one produced by the SIR model in a multilayer network.

Results
Model and Simulation Results. We consider the case of a two-layer network, A and B, of equal size 
N, where one layer represents an individual’s work environment and the other their social environment. 
The degree distribution in each layer is given by Pi(k), with i =  A, B and kmin ≤  k ≤  kmax, where kmin and 
kmax are the minimum and the maximum degree allowed a node.

At the initial stage of the Susceptible-Infected-Isolated-Recovered model (SIIR) all individuals in both 
layers are susceptible nodes. We randomly infect an individual in layer A. At the beginning of the prop-
agation process, each infected individual is isolated from both layers with a probability w for a period of 
time tw. For simplicity, in our epidemic model, we assume that every infected individual is isolated from 
both layers with the same probability w during a period of time tw. The probability that an infected 
individual is not isolated from both layers is thus 1 −  w. At each time step, a non-isolated infected indi-
vidual spreads the disease with a probability β during a time interval tr after which he recover. When an 
isolated individual j after tw time steps is no longer isolated he reverts to two possibles states. When 
tw <  tr, j will be infected in both layers for only tr −  tw time steps and the infection transmissibility of j is 
reduced from 1 1 trβ− ( − )  to 1 1 t tr wβ− ( − ) − , but when tw ≥  tr, j recovers and no longer spreads the 
disease. At the final stage of the propagation all of the individuals are either susceptible or recovered. The 
overall transmissibility T T t t wr w

≡ β, , ,
⁎ ⁎  is the probability that an infected individual will transmit the dis-

ease to their neighbors. This probability takes into account that the infected is either isolated or 
non-isolated in both layers for a period of time and is given by

T w w1 [ 1 1 1 ] 1t t tr r wβ β= − ( − ) ( − ) + ( − ) . ( )−⁎

Here the second and third term takes into account non-isolated and isolated individuals and represents 
the probabilities that this infected individual does not transmit the disease during tr and tr −  tw time 
steps respectively.

Mapping this process onto link percolation in two layers, we can write two self-consistent coupled 
equations, fi, i =  A, B, for the probability that in a randomly chosen edge traversed by the disease there 
will be a node that facilitates an infinite branch of infection throughout the two-layer network, i.e.,
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where G A B
0
/  and /G A B

1  are the generating function defined in the Introduction for layer A and B. Here 
G A B

1
/  takes into account the probability that a branch of infection reaches a node in layer A/B of con-

nectivity k across one of its links and cannot expand through its remaining k −  1 connection. Then G A B
0
/  

represents the probability that the branch of infection propagates from one layer into the other, reaches 
a node, but cannot expand through all of its connections. Figure 1 shows a schematic of the contributions 
to Eqs. (2).

Using the nontrivial roots of Eq. (2) we compute the order parameter of the phase transition, which 
is the fraction of recovered nodes R, where R is given by

( ) ( )= − − − . ( )
⁎ ⁎R G T f G T f1 1 1 3

A
A

B
B0 0

Note that in the final state of the process the fraction of recovered nodes in layers A and B are equal 
because all nodes are present in both layers. From Eqs. (1) and (2) we see that if we use the overall 
transmissibility T* as the control parameter we lose information about w, the isolation parameter, and tw, 
the characteristic time of the isolation. In our model we thus use Tβ β≡ ⁎ as the control parameter, where 
β is obtained by inverting Eq. (1) with fixed tr. Notice that β and tr are the intrinsic probability of infec-
tion and recovery time of an epidemic obtained from epidemic data. Thus making tr constant means that 
it is the average time of the duration of the disease.

Figure 2 shows a plot of the order parameter R as a function of β for different values of w, with tr =  6 
and tw =  4 obtained from Eq. (3) and from the simulations. For (a) we consider two Erdös-Rényi (ER) 
networks40, which have a Poisson degree distribution and an average degree k k 2 31A B . 

, and for 
(b) we consider two scale free networks with an exponential cutoff c =  207, where P k k ei i i

k ci i( ) ∼ λ− − / , 
with λA =  2.5 and λB =  3.5. We use this type of SF network because it represents many structures found 
in real-world systems41,42.

In the simulations we construct two uncorrelated networks of equal size using the Molloy-Reed algo-
rithm43, and we randomly overlap one-to-one the nodes in network A with the nodes of networks B. We 
assume that an epidemic occurs at each realization if the number of recovered individuals is greater than 
200 for a system size of N =  105 44. Realizations with fewer than 200 recovered individuals are considered 
outbreaks and are disregarded.

Figure 2 shows an excellent agreement between the theoretical equations (see Eq. (3)) and the simu-
lation results. The plot shows that the critical threshold for an epidemic βc increases with the isolation 
parameter w. Note that above the threshold but near it R decreases as the isolation w increases, indicating 
that isolation for even a brief period of time reduces the propagation of the disease. The critical threshold 
βc is at the intersection of the two Eqs. (2) where all branches of infection stop spreading, i.e., fA =  fB =  0. 
This is equivalent to finding the solution of the system det(J −  I) =  0, where J is the Jacobian of the cou-
pled equation with | = ∂ /∂ |, = = = =J f fi k f f i k f f0 0i k i k

 and I is the identity, and

κ κ κ κ( − )( − ) − − ( − ) + ( − ) + = , ( )⁎ ⁎T k k T[ 1 1 ] [ 1 1 ] 1 0 4c A B A B c A B
2

Figure 1. Schematic of a multilayer network consisting of two layers, each of size N = 12. The black 
nodes represent the susceptible individuals and the red nodes the infected individuals. In this case, we 
consider tw <  tr. (a) The red arrows indicate the direction of the branches of infection. All the branches 
spreads through A and B because the infected nodes are not isolated and thus interact in both layers.  
(b) The gray node, represents an individual who is isolated from both layers for a period of time tw. (c) After 
tw time steps the gray node in (b) is no longer isolated, and can infect its neighbors in A and B, if they were 
not reach by another branch of infection, during tr −  tw time steps (Color on line).
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where κA and κB are the branching factor of layers A and B, and 〈 kA〉  and 〈 kB〉  are their average degree. 
Using numerical evaluations of the roots of Eq. (4) we find the physical and stable solution for the critical 
threshold βc, which corresponds to the smaller root of Eq. (4)45. Figure 3 shows a plot of the phase dia-
gram in the plane β −  w for (a) two ER multilayer networks40 with average degree k k 2 31A B . 

 
and (b) two power law networks with an exponential cutoff c =  207, with λA =  2.5 and λB =  3.5. In both 
Figs 3 and 4 we use tr =  6 and values tw =  0, 1, 2, 3, 4, 5, and 6, from bottom to top.

The regions below the curves shown in Fig. 3 correspond to the epidemic-free phase. Note that for 
different values of tw those regions widen as w increases. Note also that when tr =  tw there is a threshold 
wc above which, irrespective of the critical epidemic threshold (βc), the disease never becomes an epi-
demic. For tw =  0 and w =  0 we recover the SIR process in a two-layer network system that corresponds 
to βc ≈  0.043 with kmin =  1 and kmax =  40 in Fig.  3(a) and βc ≈  0.019 with kmin =  2 and kmax =  250 in 
Fig. 3(b). Although in the limit c →  ∞, βc →  0, most real-world networks are not that heterogeneous and 
exhibit low values of c9,41.

Figure 2. Simulations and theoretical results of the total fraction of recovered nodes R, in the final state 
of the process, as a function of β, with tr = 6 and tw = 4, for different values of w. The full lines 
corresponds to the theoretical evaluation of Eq. (3) and the symbols corresponds to the simulations results, 
for w =  0.1 (○) (d) in green, w =  0.5 (◻) (W) in blue and w =  1 (◊) in violet. The multilayer network is 
consisted by two layers, each of size N =  105. For (a) two ER layers with k k 2 31A B . 

, kmin =  1 and 
kmax =  40 and (b) two scale free networks with λA =  2.5, λB =  3.5 and exponential cutoff c =  20 with kmin =  2 
and kmax =  250 (Color online).

Figure 3. Phase diagram in the plane β − w. In both plots, we consider tr = 6 and tw = 0, 1, 2, 3, 4, 5, 6 
from bottom to top for (a) two ER networks with k k 2 31A B . 

 with kmin =  1 and kmax =  40. (b) two 
power law networks with λA =  2.5 and λB =  3.5 with kmin =  2 and kmax =  250 and exponential cutoff c =  20. 
The region above each line corresponds to the Epidemic phase and the region below correspond to the 
Epidemic-free phase. In the limit of w →  0 and for tw =  0 we recover the SIR in multiplex networks with  
(a) βc ≈  0.043 and (b) βc ≈  0.019. For the case tr =  tw, there is a threshold for w with (a) wc =  0.76 and  
(b) wc =  0.88, above which there is only an Epidemic-free phase.



www.nature.com/scientificreports/

5Scientific RepoRts | 5:12151 | DOi: 10.1038/srep12151

As expected and confirmed by our model, the best way to stop the propagation of a disease before it 
becomes an epidemic is to isolate the infected individuals in both layers until they recover, which corre-
sponds to tw =  tr and w >  0. Because this is strongly dependent upon the resources of the location from 
which the disease begins to spread and on each infected patient’s knowledge of the consequences of being 
in contact with healthy individuals, the isolation procedure can be difficult to implement.

We also study a case in which there is isolation in only one layer (for a detailed description see 
Supplementary Information). We find that there is no critical value wc above which the phase is 
epidemic-free, i.e., above βc and for all values of w the disease always becomes an epidemic.

The phase diagram indicates that when the SIR model is applied to multilayer networks, which corre-
sponds to the case tw =  0, it underestimates the critical threshold βc of an epidemic. This underestimation 
can strongly affect the spreading dynamics. Figure 4(a) plots the ratio βc/βc(tw =  0) as a function of w for 
different values of tw, with tw >  0 for two ER networks. Figure 4(b) shows how much more the critical 
threshold is underestimated in the SIR model of two-layer SF networks than in the SIIR model.

In the limit tw =  0 and w →  0 we revert to the SIR model in multilayer networks39. As w increases and 
when tw ≠ 0 there is always an underestimation of the critical threshold. Note that when tw =  tr the plot 
shows that when the percentage of infected individuals who are hospitalized or isolated in their homes is 
approximately 40%, for two ER, and 50%, for two SF, the SIIR model indicates double the actual critical 
threshold of infection than that indicated in the SIR model. The declaration of an epidemic by a gov-
ernment health service is a non-trivial decision, and can cause panic and negatively effect the economy 
of the region. Thus any epidemic model of airborne diseases that spread in multilayer networks, if the 
projected scenario is to be realistic and in agreement with the available real data, must take into account 
that some infected individuals will be isolated for a period of time. Note that isolation can represent 
behavioral change but, unlike previous models in which the behavioral changes are solely the result of 
decisions made by susceptible individuals46,47, our model allows behavioral changes brought about by 
placing the infected individuals in quarantine or by hospitalizing them48–51, two practices that were insti-
tuted during the recent Ebola outbreak in West Africa. Also note that this isolation can delay the onset 
of the peak of the epidemic and thus allow health authorities more time to make interventions. This is 
an important topic for future investigation.

Discussion
In summary, we study a SIIR epidemic model in a two-layer network in which infected individuals are 
isolated from both layers with probability w during a period of time tw. Using the framework of link per-
colation based on a generating function, we compute the total fraction of recovered nodes in the steady 
state as a function of the probability of infection β and find a perfect agreement between the theoretical 
and the simulation results. We derive an expression for the intrinsic epidemic threshold and we find that 
βc increases as w and tw increase. For tw =  tr we find a critical threshold wc above which any disease never 
becomes an epidemic and which cannot be found when isolating only in one layer. From our results 
we also note that as the isolation parameter and the period of isolation increases the underestimation 
increases. Our model enables us to conclude that the SIR model of multilayer networks without isolation 
underestimates the critical infection threshold. Thus the isolation of the infected individuals, in both lay-
ers, for a period of time should be included in future epidemic models in which individuals can recover.

Figure 4. Ratio of βc(tw) to βc(0) as a function of w. For tw = 0, 1, 2, 3, 4, 5, 6 from bottom to top for 
 (a) two ER networks with k k 2 31A B . 

 with kmin =  1 and kmax =  40 and (b) two power law networks 
with λA =  2.5 and λB =  3.5 with kmin =  2 and kmax =  250, with exponential cutoff c =  20. In both Figures, the 
limit w →  0 correspond to a SIR process, and as w increases the underestimation increases.
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