research

Interacting social processes on interconnected networks

Abstract

We propose and study a model for the interplay between two different dynamical processes --one for opinion formation and the other for decision making-- on two interconnected networks AA and BB. The opinion dynamics on network AA corresponds to that of the M-model, where the state of each agent can take one of four possible values (S=2,1,1,2S=-2,-1,1,2), describing its level of agreement on a given issue. The likelihood to become an extremist (S=±2S=\pm 2) or a moderate (S=±1S=\pm 1) is controlled by a reinforcement parameter r0r \ge 0. The decision making dynamics on network BB is akin to that of the Abrams-Strogatz model, where agents can be either in favor (S=+1S=+1) or against (S=1S=-1) the issue. The probability that an agent changes its state is proportional to the fraction of neighbors that hold the opposite state raised to a power β\beta. Starting from a polarized case scenario in which all agents of network AA hold positive orientations while all agents of network BB have a negative orientation, we explore the conditions under which one of the dynamics prevails over the other, imposing its initial orientation. We find that, for a given value of β\beta, the two-network system reaches a consensus in the positive state (initial state of network AA) when the reinforcement overcomes a crossover value r(β)r^*(\beta), while a negative consensus happens for r<r(β)r<r^*(\beta). In the rβr-\beta phase space, the system displays a transition at a critical threshold βc\beta_c, from a coexistence of both orientations for β<βc\beta<\beta_c to a dominance of one orientation for β>βc\beta>\beta_c. We develop an analytical mean-field approach that gives an insight into these regimes and shows that both dynamics are equivalent along the crossover line (r,β)(r^*,\beta^*).Comment: 25 pages, 6 figure

    Similar works