477 research outputs found
Mirror-orientation noise in a Fabry-Perot interferometer gravitational wave detector
The influence of angular mirror-orientation errors on the length of a Fabry-Perot resonator is analyzed geometrically. Under conditions in which dominant errors are static or vary slowly over time, the analysis permits a simple prediction of the spectrum of short-term cavity length fluctuations resulting from mirror-orientation noise. The resulting model is applicable to the design of mirror control systems for the Laser Interferometer Gravitational-Wave Observatory, which will monitor separations between mirrored surfaces of suspended inertial test bodies as a way to measure astrophysical gravitational radiation. The analysis is verified by measuring the response of the Laser Interferometer Gravitational- Wave Observatory's 40-m interferometer test-bed to the rotation of its mirrors
Evaluation Research and Institutional Pressures: Challenges in Public-Nonprofit Contracting
This article examines the connection between program evaluation research and decision-making by public managers. Drawing on neo-institutional theory, a framework is presented for diagnosing the pressures and conditions that lead alternatively toward or away the rational use of evaluation research. Three cases of public-nonprofit contracting for the delivery of major programs are presented to clarify the way coercive, mimetic, and normative pressures interfere with a sound connection being made between research and implementation. The article concludes by considering how public managers can respond to the isomorphic pressures in their environment that make it hard to act on data relating to program performance.This publication is Hauser Center Working Paper No. 23. The Hauser Center Working Paper Series was launched during the summer of 2000. The Series enables the Hauser Center to share with a broad audience important works-in-progress written by Hauser Center scholars and researchers
Elliptic and hyperelliptic magnetohydrodynamic equilibria
The present study is a continuation of a previous one on "hyperelliptic"
axisymmetric equilibria started in [Tasso and Throumoulopoulos, Phys. Plasmas
5, 2378 (1998)].
Specifically, some equilibria with incompressible flow nonaligned with the
magnetic field and restricted by appropriate side conditions like "isothermal"
magnetic surfaces, "isodynamicity" or P + B^2/2 constant on magnetic surfaces
are found to be reducible to elliptic integrals. The third class recovers
recent equilibria found in [Schief, Phys. Plasmas 10, 2677 (2003)]. In contrast
to field aligned flows, all solutions found here have nonzero toroidal magnetic
field on and elliptic surfaces near the magnetic axis.Comment: 9 page
Spectroscopic Confirmation of a Population of Isolated, Intermediate-Mass YSOs
Wide-field searches for young stellar objects (YSOs) can place useful
constraints on the prevalence of clustered versus distributed star formation.
The Spitzer/IRAC Candidate YSO (SPICY) catalog is one of the largest
compilations of such objects (~120,000 candidates in the Galactic midplane).
Many SPICY candidates are spatially clustered, but, perhaps surprisingly,
approximately half the candidates appear spatially distributed. To better
characterize this unexpected population and confirm its nature, we obtained
Palomar/DBSP spectroscopy for 26 of the optically-bright (G<15 mag) "isolated"
YSO candidates. We confirm the YSO classifications of all 26 sources based on
their positions on the Hertzsprung-Russell diagram, H and Ca II line-emission
from over half the sample, and robust detection of infrared excesses. This
implies a contamination rate of <10% for SPICY stars that meet our optical
selection criteria. Spectral types range from B4 to K3, with A-type stars most
common. Spectral energy distributions, diffuse interstellar bands, and Galactic
extinction maps indicate moderate to high extinction. Stellar masses range from
~1 to 7 , and the estimated accretion rates, ranging from
to yr, are typical for YSOs
in this mass range. The 3D spatial distribution of these stars, based on Gaia
astrometry, reveals that the "isolated" YSOs are not evenly distributed in the
Solar neighborhood but are concentrated in kpc-scale dusty Galactic structures
that also contain the majority of the SPICY YSO clusters. Thus, the processes
that produce large Galactic star-forming structures may yield nearly as many
distributed as clustered YSOs.Comment: Accepted for publication in AJ. 22 pages, 9 figures, and 4 tables.
Figure sets are available from
https://sites.astro.caltech.edu/~mkuhn/SPICY/PaperIII
Changes in SARS-CoV-2 viral load and mortality during the initial wave of the pandemic in New York City
Funding: This work was partially supported by the National Center for Advancing Translational Sciences of the National Institutes of Health (UL1 TR0023484 to Julianne Imperato-McGinley) and the National Institute of Allergy and Infectious Diseases (UM1 AI069470 to M.E.S).Public health interventions such as social distancing and mask wearing decrease the incidence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, but it is unclear whether they decrease the viral load of infected patients and whether changes in viral load impact mortality from coronavirus disease 2019 (COVID-19). We evaluated 6923 patients with COVID-19 at six New York City hospitals from March 15-May 14, 2020, corresponding with the implementation of public health interventions in March. We assessed changes in cycle threshold (CT) values from reverse transcription-polymerase chain reaction tests and in-hospital mortality and modeled the impact of viral load on mortality. Mean CT values increased between March and May, with the proportion of patients with high viral load decreasing from 47.7% to 7.8%. In-hospital mortality increased from 14.9% in March to 28.4% in early April, and then decreased to 8.7% by May. Patients with high viral loads had increased mortality compared to those with low viral loads (adjusted odds ratio 2.34). If viral load had not declined, an estimated 69 additional deaths would have occurred (5.8% higher mortality). SARS-CoV-2 viral load steadily declined among hospitalized patients in the setting of public health interventions, and this correlated with decreases in mortality.Peer reviewe
TRPP2 and TRPV4 form a polymodal sensory channel complex
The primary cilium has evolved as a multifunctional cellular compartment that decorates most vertebrate cells. Cilia sense mechanical stimuli in various organs, but the molecular mechanisms that convert the deflection of cilia into intracellular calcium transients have remained elusive. Polycystin-2 (TRPP2), an ion channel mutated in polycystic kidney disease, is required for cilia-mediated calcium transients but lacks mechanosensitive properties. We find here that TRPP2 utilizes TRPV4 to form a mechano- and thermosensitive molecular sensor in the cilium. Depletion of TRPV4 in renal epithelial cells abolishes flow-induced calcium transients, demonstrating that TRPV4, like TRPP2, is an essential component of the ciliary mechanosensor. Because TRPV4-deficient zebrafish and mice lack renal cysts, our findings challenge the concept that defective ciliary flow sensing constitutes the fundamental mechanism of cystogenesis
Increased Matrix Metalloproteinase (MMPs) Levels Do Not Predict Disease Severity or Progression in Emphysema
Rationale: Though matrix metalloproteinases (MMPs) are critical in the pathogenesis of COPD, their utility as a disease biomarker remains uncertain. This study aimed to determine whether bronchoalveolar lavage (BALF) or plasma MMP measurements correlated with disease severity or functional decline in emphysema. Methods: Enzyme-linked immunosorbent assay and luminex assays measured MMP-1, -9, -12 and tissue inhibitor of matrix metalloproteinase-1 in the BALF and plasma of non-smokers, smokers with normal lung function and moderate-to-severe emphysema subjects. In the cohort of 101 emphysema subjects correlative analyses were done to determine if MMP or TIMP-1 levels were associated with key disease parameters or change in lung function over an 18-month time period. Main Results: Compared to non-smoking controls, MMP and TIMP-1 BALF levels were significantly elevated in the emphysema cohort. Though MMP-1 was elevated in both the normal smoker and emphysema groups, collagenase activity was only increased in the emphysema subjects. In contrast to BALF, plasma MMP-9 and TIMP-1 levels were actually decreased in the emphysema cohort compared to the control groups. Both in the BALF and plasma, MMP and TIMP-1 measurements in the emphysema subjects did not correlate with important disease parameters and were not predictive of subsequent functional decline. Conclusions: MMPs are altered in the BALF and plasma of emphysema; however, the changes in MMPs correlate poorly with parameters of disease intensity or progression. Though MMPs are pivotal in the pathogenesis of COPD, these findings suggest that measuring MMPs will have limited utility as a prognostic marker in this disease. Š 2013 D'Armiento et al
The Fifth Data Release of the Sloan Digital Sky Survey
This paper describes the Fifth Data Release (DR5) of the Sloan Digital Sky
Survey (SDSS). DR5 includes all survey quality data taken through June 2005 and
represents the completion of the SDSS-I project (whose successor, SDSS-II will
continue through mid-2008). It includes five-band photometric data for 217
million objects selected over 8000 square degrees, and 1,048,960 spectra of
galaxies, quasars, and stars selected from 5713 square degrees of that imaging
data. These numbers represent a roughly 20% increment over those of the Fourth
Data Release; all the data from previous data releases are included in the
present release. In addition to "standard" SDSS observations, DR5 includes
repeat scans of the southern equatorial stripe, imaging scans across M31 and
the core of the Perseus cluster of galaxies, and the first spectroscopic data
from SEGUE, a survey to explore the kinematics and chemical evolution of the
Galaxy. The catalog database incorporates several new features, including
photometric redshifts of galaxies, tables of matched objects in overlap regions
of the imaging survey, and tools that allow precise computations of survey
geometry for statistical investigations.Comment: ApJ Supp, in press, October 2007. This paper describes DR5. The SDSS
Sixth Data Release (DR6) is now public, available from http://www.sdss.or
The Impact of Inhomogeneous Reionization on the Satellite Galaxy Population of the Milky Way
We use the publicly available subhalo catalogs from the Via Lactea simulation
along with a Gpc-scale N-body simulation to understand the impact of
inhomogeneous reionization on the satellite galaxy population of the Milky Way.
The large-volume simulation is combined with a model for reionization that
allows us to predict the distribution of reionization times for Milky Way mass
halos. Motivated by this distribution, we identify candidate satellite galaxies
in the simulation by requiring that any subhalo must grow above a specified
mass threshold before it is reionized; after this time the photoionizing
background will suppress both the formation of stars and the accretion of gas.
We show that varying the reionization time over the range expected for Milky
Way mass halos can change the number of satellite galaxies by roughly two
orders of magnitude. This conclusion is in contradiction with a number of
studies in the literature, and we conclude that this is a result of
inconsistent application of the results of Gnedin (2000). We compare our
satellite galaxies to observations using both abundance matching and stellar
population synthesis methods to assign luminosities to our subhalos and account
for observational completeness effects. Additionally, if we assume that the
mass threshold is set by the virial temperature Tvir = 8e3K we find that our
model accurately matches the vmax distribution, radial distribution, and
luminosity function of observed Milky Way satellites for a reionization time
zreion = 9.6^{1.0}_{-2.1}, assuming that the Via Lacteasubhalo distribution is
representative of the Milky Way. This results in the presence of
119^{+202}_{-50} satellite galaxies.Comment: 12 pages. Replaced with version accepted to Ap
The Seventh Data Release of the Sloan Digital Sky Survey
This paper describes the Seventh Data Release of the Sloan Digital Sky Survey
(SDSS), marking the completion of the original goals of the SDSS and the end of
the phase known as SDSS-II. It includes 11663 deg^2 of imaging data, with most
of the roughly 2000 deg^2 increment over the previous data release lying in
regions of low Galactic latitude. The catalog contains five-band photometry for
357 million distinct objects. The survey also includes repeat photometry over
250 deg^2 along the Celestial Equator in the Southern Galactic Cap. A
coaddition of these data goes roughly two magnitudes fainter than the main
survey. The spectroscopy is now complete over a contiguous area of 7500 deg^2
in the Northern Galactic Cap, closing the gap that was present in previous data
releases. There are over 1.6 million spectra in total, including 930,000
galaxies, 120,000 quasars, and 460,000 stars. The data release includes
improved stellar photometry at low Galactic latitude. The astrometry has all
been recalibrated with the second version of the USNO CCD Astrograph Catalog
(UCAC-2), reducing the rms statistical errors at the bright end to 45
milli-arcseconds per coordinate. A systematic error in bright galaxy photometr
is less severe than previously reported for the majority of galaxies. Finally,
we describe a series of improvements to the spectroscopic reductions, including
better flat-fielding and improved wavelength calibration at the blue end,
better processing of objects with extremely strong narrow emission lines, and
an improved determination of stellar metallicities. (Abridged)Comment: 20 pages, 10 embedded figures. Accepted to ApJS after minor
correction
- âŚ