500 research outputs found

    An International Classification of Inherited Metabolic Disorders (ICIMD)

    Get PDF
    Several initiatives at establishing a classification of inherited metabolic disorders have been published previously, some focusing on pathomechanisms, others on clinical manifestations, while yet another attempted a simplified approach of a comprehensive nosology. Some of these classifications suffered from shortcomings, such as lack of a mechanism for continuous update in light of a rapidly‐evolving field, or lack of widespread input from the metabolic community at large. Our classification – the International Classification of Inherited Metabolic Disorders, or ICIMD – includes 1,450 disorders, and differs from prior approaches in that it benefited from input by a large number of experts in the field, and was endorsed by major metabolic societies around the globe. Several criteria such as pathway involvement and pathomechanisms were considered. The main purpose of the hierarchical, group‐based approach of the ICIMD is an improved understanding of the interconnections between many individual conditions that may share functional, clinical and diagnostic features. The ICIMD aims to include any primary genetic condition in which alteration of a biochemical pathway is intrinsic to specific biochemical, clinical and/or pathophysiological features. As new disorders are discovered, we will seek the opinion of experts in the advisory board prior to inclusion in the appropriate group of the ICIMD, thus guaranteeing the continuing relevance of this classification via regular curation and expert advice

    Hsp70 Cochaperones HspBP1 and BAG-1M Differentially Regulate Steroid Hormone Receptor Function

    Get PDF
    Hsp70 binding protein 1 (HspBP1) and Bcl2-associated athanogene 1 (BAG-1), the functional orthologous nucleotide exchange factors of the heat shock protein 70 kilodalton (Hsc70/Hsp70) chaperones, catalyze the release of ADP from Hsp70 while inducing different conformational changes of the ATPase domain of Hsp70. An appropriate exchange rate of ADP/ATP is crucial for chaperone-dependent protein folding processes. Among Hsp70 client proteins are steroid receptors such as the glucocorticoid receptor (GR), the mineralocorticoid receptor (MR), and the androgen receptor (AR). BAG-1 diversely affects steroid receptor activity, while to date the influence of HspBP1 on steroid receptor function is mostly unknown. Here, we compared the influence of HspBP1 and BAG-1M on Hsp70-mediated steroid receptor folding complexes and steroid receptor activity. Coimmunoprecipitation studies indicated preferential binding of Hsp40 and the steroid receptors to BAG-1M as compared to HspBP1. Furthermore, Hsp70 binding to the ligand-binding domain of GR was reduced in the presence of HspBP1 but not in the presence of BAG-1M as shown by pull-down assays. Reporter gene experiments revealed an inhibitory effect on GR, MR, and AR at a wide range of HspBP1 protein levels and at hormone concentrations at or approaching saturation. BAG-1M exhibited a transition from stimulatory effects at low BAG-1M levels to inhibitory effects at higher BAG-1M levels. Overall, BAG-1M and HspBP1 had differential impacts on the dynamic composition of steroid receptor folding complexes and on receptor function with important implications for steroid receptor physiology

    Impact of Nucleon Mass Shift on the Freeze Out Process

    Full text link
    The freeze out of a massive nucleon gas through a finite layer with time-like normal is studied. The impact of in-medium nucleon mass shift on the freeze out process is investigated. A considerable modification of the thermodynamical variables temperature, flow-velocity, energy density and particle density has been found. Due to the nucleon mass shift the freeze out particle distribution functions are changed noticeably in comparison with evaluations, which use vacuum nucleon mass.Comment: submitted to Physical Review

    Transient trimethylaminuria related to menstruation

    Get PDF
    BACKGROUND: Trimethylaminuria, or fish odor syndrome, includes a transient or mild malodor caused by an excessive amount of malodorous trimethylamine as a result of body secretions. Herein, we describe data to support the proposal that menses can be an additional factor causing transient trimethylaminuria in self-reported subjects suffering from malodor and even in healthy women harboring functionally active flavin-containing monooxygenase 3 (FMO3). METHODS: FMO3 metabolic capacity (conversion of trimethylamine to trimethylamine N-oxide) was defined as the urinary ratio of trimethylamine N-oxide to total trimethylamine. RESULTS: Self-reported Case (A) that was homozygous for inactive Arg500stop FMO3, showed decreased metabolic capacity of FMO3 (i.e., ~10% the unaffected metabolic capacity) during 120 days of observation. For Case (B) that was homozygous for common [Glu158Lys; Glu308Gly] FMO3 polymorphisms, metabolic capacity of FMO3 was almost ~90%, except for a few days surrounding menstruation showing < 40% metabolic capacity. In comparison, three healthy control subjects that harbored heterozygous polymorphisms for [Glu158Lys; Glu308Gly] FMO3 or homozygous for wild FMO3 showed normal (> 90%) metabolic capacity, however, on days around menstruation the FMO3 metabolic capacity was decreased to ~60–70%. CONCLUSION: Together, these results indicate that abnormal FMO3 capacity is caused by menstruation particularly in the presence, in homozygous form, of mild genetic variants such as [Glu158Lys; Glu308Gly] that cause a reduced FMO3 function

    Evaluating chiral symmetry restoration through the use of sum rules

    Full text link
    We pursue the idea of assessing chiral restoration via in-medium modifications of hadronic spectral functions of chiral partners. The usefulness of sum rules in this endeavor is illustrated, focusing on the vector and axial-vector channels. We first present an update on constructing quantitative results for pertinent vacuum spectral functions. These spectral functions serve as a basis upon which the in-medium spectral functions can be constructed. A striking feature of our analysis of the vacuum spectral functions is the need to include excited resonances, dictated by satisfying the Weinberg-type sum rules. This includes excited states in both the vector and axial-vector channels. Preliminary results for the finite temperature vector spectral function are presented. Based on a rho spectral function tested in dilepton data which develops a shoulder at low energies, we find that the rho' peak flattens off. The flattening may be a sign of chiral restoration, though a study of the finite temperature axial-vector spectral function remains to be carried out.Comment: 9 pages, conference proceedings from Resonance Workshop at UT Austin, March 5-7 201

    Direction of light propagation to order G^2 in static, spherically symmetric spacetimes: a new derivation

    Full text link
    A procedure avoiding any integration of the null geodesic equations is used to derive the direction of light propagation in a three-parameter family of static, spherically symmetric spacetimes within the post-post-Minkowskian approximation. Quasi-Cartesian isotropic coordinates adapted to the symmetries of spacetime are systematically used. It is found that the expression of the angle formed by two light rays as measured by a static observer staying at a given point is remarkably simple in these coordinates. The attention is mainly focused on the null geodesic paths that we call the "quasi-Minkowskian light rays". The vector-like functions characterizing the direction of propagation of such light rays at their points of emission and reception are firstly obtained in the generic case where these points are both located at a finite distance from the centre of symmetry. The direction of propagation of the quasi-Minkowskian light rays emitted at infinity is then straightforwardly deduced. An intrinsic definition of the gravitational deflection angle relative to a static observer located at a finite distance is proposed for these rays. The expression inferred from this definition extends the formula currently used in VLBI astrometry up to the second order in the gravitational constant G.Comment: 19 pages; revised introduction; added references for introduction; corrected typos; published in Class. Quantum Gra

    In-medium Properties of Hadrons -- Observables

    Full text link
    We first briefly review the theoretical basis for calculations of changes of hadronic properties in dense nuclear matter. These changes have usually been investigated by means of relativistic heavy-ion reactions. Here we discuss that observable consequences of such changes can also be seen in more elementary reactions on nuclei. Particular emphasis is put on a discussion of actual observables in photonuclear reactions; we discuss in detail η\eta- and vector-meson production. We show that photoproduction of η\eta's can yield essential information on in-medium properties of the S11(1535)S_{11}(1535) resonance while the ϕ\phi meson properties will probably not be accessible through the K+KK^+K^- decay channel. However, for ω\omega mesons the π0γ\pi^0\gamma decay channel, due to its reduced final state interaction, looks more promising in this respect. Completely free of final state interactions is dilepton production in the few GeV range. We show that the sensitivity of this decay channel to changes of hadronic properties in medium in photonuclear reactions on nuclei is as large as in ultrarelativistic heavy ion collisions. Finally we discuss that hadron production in nuclei at 10 -- 20 GeV photon energies can give important information on the hadronization process.Comment: Invited Lecture by U. Mosel at Erice International School on Nuclear Physics 200

    Study of in-medium ω\omega meson properties in Ap, pA and AA collisions

    Full text link
    We propose to investigate the in-medium properties of vector ω\omega mesons at the normal nuclear density in Ap(pA) collisions and at higher density in AA collisions at the ITEP accelerator facility TWAC. Using of the inverse Ap kinematics will permit us to study the ω\omega meson production in a wide momentum interval included the not yet explored range of small meson momenta relative to the projectile nuclei where the mass modification effect in nuclear matter is expected to be the strongest. Momentum dependence of the in-medium ω\omega meson width will be studied in the traditional pA kinematics. We intend to use the electromagnetic calorimeter for reconstruction of the ω\omega meson invariant mass by detecting photons from the ωπ0γ3γ\omega \to \pi^{0}\gamma \to 3\gamma decay. The model calculations and simulations with RQMD generator show feasibility of the proposed experiment. Available now intensity of the ion beams provides a possibility to collect large statistics and make decisive conclusion about the ω\omega meson properties at density of normal nuclei. At the second stage of the investigation the ω\omega meson properties will be studied in AA collisions at higher density. Interpretation of these measurements will be based on the results obtained in Ap(pA) interactions. Further investigation of the in-medium properties of light unflavored and charmed mesons can be performed at ITEP and at GSI(FAIR) where higher ion energies will be accessible in near future.Comment: 26 pages, 10 figures, 2 table
    corecore