407 research outputs found
Airway responses and inflammation in subjects with asthma after four days of repeated high-single-dose allergen challenge
Background: Both standard and low-dose allergen provocations are an established tool in asthma research to improve our understanding of the pathophysiological mechanism of allergic asthma. However, clinical symptoms are less likely to be induced. Therefore, we designed a protocol for repetitive high-dose bronchial allergen challenges to generate clinical symptoms and airway inflammation.
Methods: A total of 27 patients aged 18 to 40 years with positive skin-prick tests and mild asthma underwent repetitive high-dose allergen challenges with household dust mites for four consecutive days. Pulmonary function and exhaled NO were measured at every visit. Induced sputum was analysed before and after the allergen challenges for cell counts, ECP, IL-5, INF-γ, IL-8, and the transcription factor Foxp3.
Results: We found a significant decrease in pulmonary function, an increased use of salbutamol and the development of a late asthmatic response and bronchial hyperresponsiveness, as well as a significant induction of eNO, eosinophils, and Th-2 cytokines. Repeated provocation was feasible in the majority of patients. Two subjects had severe adverse events requiring prednisolone to cope with nocturnal asthma symptoms.
Conclusions: Repeated high-dose bronchial allergen challenges resulted in severe asthma symptoms and marked Th-2-mediated allergic airway inflammation. The high-dose challenge model is suitable only in an attenuated form in diseased volunteers for proof-of-concept studies and in clinical settings to reduce the risk of severe asthma exacerbations.
Trial registration: ClinicalTrials.govNCT0067720
International Journal of Legal Medicine / Are animal models predictive for human postmortem muscle protein degradation?
A most precise determination of the postmortem interval (PMI) is a crucial aspect in forensic casework. Although there are diverse approaches available to date, the high heterogeneity of cases together with the respective postmortal changes often limit the validity and sufficiency of many methods. Recently, a novel approach for time since death estimation by the analysis of postmortal changes of muscle proteins was proposed. It is however necessary to improve the reliability and accuracy, especially by analysis of possible influencing factors on protein degradation. This is ideally investigated on standardized animal models that, however, require legitimization by a comparison of human and animal tissue, and in this specific case of protein degradation profiles. Only if protein degradation events occur in comparable fashion within different species, respective findings can sufficiently be transferred from the animal model to application in humans. Therefor samples from two frequently used animal models (mouse and pig), as well as forensic cases with representative protein profiles of highly differing PMIs were analyzed. Despite physical and physiological differences between species, western blot analysis revealed similar patterns in most of the investigated proteins. Even most degradation events occurred in comparable fashion. In some other aspects, however, human and animal profiles depicted distinct differences. The results of this experimental series clearly indicate the huge importance of comparative studies, whenever animal models are considered. Although animal models could be shown to reflect the basic principles of protein degradation processes in humans, we also gained insight in the difficulties and limitations of the applicability of the developed methodology in different mammalian species regarding protein specificity and methodic functionality.(VLID)217131
Anti-inflammatory effects of the petasin phyto drug Ze339 are mediated by inhibition of the STAT pathway
Ze339, an herbal extract from Petasites hybridus leaves is effective in treatment of allergic rhinitis by inhibition of a local production of IL-8 and eicosanoid LTB4 in allergen-challenged patients. However, the mechanism of action and anti-inflammatory potential in virally induced exacerbation of the upper airways is unknown. This study investigates the anti-inflammatory mechanisms of Ze339 on primary human nasal epithelial cells (HNECs) upon viral, bacterial and pro-inflammatory triggers. To investigate the influence of viral and bacterial infections on the airways, HNECs were stimulated with viral mimics, bacterial toll-like-receptor (TLR)-ligands or cytokines, in presence or absence of Ze339. The study uncovers Ze339 modulated changes in pro-inflammatory mediators and decreased neutrophil chemotaxis as well as a reduction of the nuclear translocation and phosphorylation of STAT molecules. Taken together, this study suggests that phyto drug Ze339 specifically targets STAT-signalling pathways in HNECs and has high potential as a broad anti-inflammatory drug that exceeds current indication
EcoRI restriction endonuclease cleavage site map of bacteriophage P22 DNA
The seven EcoRI restriction endonuclease cleavage sites in bacteriophage P22 DNA have been mapped. The cleavage site map of circularly permuted P22 linear DNA is a circle. The positions of EcoRI sites in the early region of the P22 genome were determined by comparing products of EcoRI digestion of mature linear P22 chromosomes with the EcoRI cleavage fragments of DNA of three [lambda]immP22 hybrid phages and a P22 deletion mutant. An EcoRI site in the late region was mapped by partial digestion of the P22 deletion mutant DNA. Since the P22 genes included in the [lambda]immP22 hybrid phages, and the genetic region missing in the P22 deletion mutant are known, some P22 genes can be positioned on this initial physical map of the P22 genome relative to EcoRI cleavage sites.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/22676/1/0000229.pd
Restriction endonuclease HindIII cleavage site map of bacteriophage P22
The 14 HindIII cleavage sites on P22 DNA have been mapped. HindIII cleavage sites were located relative to EcoRI sites by determining the molecular weights and map order of fragments produced by HindIII, or HindIII and EcoRI digestion. Molecular weights were estimated from the electrophoretic mobility of fragments. The HindIII fragment order was established by HindIII cleavage of segments of the P22 genome obtained as isolated EcoRI fragments or as overlapping genetic substitutions in bacteriophage [lambda] chromosomes. The resulting HindIII/EcoRI cleavage site map defines physical markers in all regions of the P22 genome and defines the locations of a number of P22 genes on this physical map of the P22 chromosome. Three HindIII sites and two HpaI sites have been mapped in immI, one of two P22 gene clusters controlling lysogeny. Two of these HindIII sites lie within the structural gene ant specifying one of the regulatory proteins of the immI region. Assignment of the ant gene to specific HindIII fragments utilized the insertion element Tnl, which was shown to contain no HindIII cleavage sites.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/23723/1/0000695.pd
The astrocyte-produced growth factor HB-EGF limits autoimmune CNS pathology
Central nervous system (CNS)-resident cells such as microglia, oligodendrocytes and astrocytes are gaining increasing attention in respect to their contribution to CNS pathologies including multiple sclerosis (MS). Several studies have demonstrated the involvement of pro-inflammatory glial subsets in the pathogenesis and propagation of inflammatory events in MS and its animal models. However, it has only recently become clear that the underlying heterogeneity of astrocytes and microglia can not only drive inflammation, but also lead to its resolution through direct and indirect mechanisms. Failure of these tissue-protective mechanisms may potentiate disease and increase the risk of conversion to progressive stages of MS, for which currently available therapies are limited. Using proteomic analyses of cerebrospinal fluid specimens from patients with MS in combination with experimental studies, we here identify Heparin-binding EGF-like growth factor (HB-EGF) as a central mediator of tissue-protective and anti-inflammatory effects important for the recovery from acute inflammatory lesions in CNS autoimmunity. Hypoxic conditions drive the rapid upregulation of HB-EGF by astrocytes during early CNS inflammation, while pro-inflammatory conditions suppress trophic HB-EGF signaling through epigenetic modifications. Finally, we demonstrate both anti-inflammatory and tissue-protective effects of HB-EGF in a broad variety of cell types in vitro and use intranasal administration of HB-EGF in acute and post-acute stages of autoimmune neuroinflammation to attenuate disease in a preclinical mouse model of MS. Altogether, we identify astrocyte-derived HB-EGF and its epigenetic regulation as a modulator of autoimmune CNS inflammation and potential therapeutic target in MS. Linnerbauer and colleagues find that HB-EGF produced by reactive astrocytes is protective during autoimmune neuroinflammation, but epigenetically suppressed during late stages
COL4A3 is degraded in allergic asthma and degradation predicts response to anti-IgE therapy.
BACKGROUND
Asthma is a heterogeneous syndrome substantiating the urgent requirement for endotype-specific biomarkers. Dysbalance of fibrosis and fibrolysis in asthmatic lung tissue leads to reduced levels of the inflammation-protective collagen 4 (COL4A3).
OBJECTIVE
To delineate the degradation of COL4A3 in allergic airway inflammation and evaluate the resultant product as a biomarker for anti-IgE therapy response.
METHODS
The serological COL4A3 degradation marker C4Ma3 (Nordic Bioscience, Denmark) and serum cytokines were measured in the ALLIANCE cohort (pediatric cases/controls: 134/35; adult cases/controls: 149/31). Exacerbation of allergic airway disease in mice was induced by sensitising to OVA, challenge with OVA aerosol and instillation of poly(cytidylic-inosinic). Fulacimstat (chymase inhibitor, Bayer) was used to determine the role of mast cell chymase in COL4A3 degradation. Patients with cystic fibrosis (CF, n=14) and CF with allergic broncho-pulmonary aspergillosis (ABPA, n=9) as well as severe allergic, uncontrolled asthmatics (n=19) were tested for COL4A3 degradation. Omalizumab (anti-IgE) treatment was assessed by the Asthma Control Test.
RESULTS
Serum levels of C4Ma3 were increased in asthma in adults and children alike and linked to a more severe, exacerbating allergic asthma phenotype. In an experimental asthma mouse model, C4Ma3 was dependent on mast cell chymase. Serum C4Ma3 was significantly elevated in CF plus ABPA and at baseline predicted the success of the anti-IgE therapy in allergic, uncontrolled asthmatics (diagnostic odds ratio 31.5).
CONCLUSION
C4Ma3 level depend on lung mast cell chymase and are increased in a severe, exacerbating allergic asthma phenotype. C4Ma3 may serve as a novel biomarker to predict anti-IgE therapy response
COL4A3 is degraded in allergic asthma and degradation predicts response to anti-IgE therapy.
BACKGROUND: Asthma is a heterogeneous syndrome substantiating the urgent requirement for endotype-specific biomarkers. Dysbalance of fibrosis and fibrolysis in asthmatic lung tissue leads to reduced levels of the inflammation-protective collagen 4 (COL4A3). OBJECTIVE: To delineate the degradation of COL4A3 in allergic airway inflammation and evaluate the resultant product as a biomarker for anti-IgE therapy response. METHODS: The serological COL4A3 degradation marker C4Ma3 (Nordic Bioscience, Denmark) and serum cytokines were measured in the ALLIANCE cohort (paediatric cases/controls: n=134/n=35; adult cases/controls: n=149/n=31). Exacerbation of allergic airway disease in mice was induced by sensitising to ovalbumin (OVA), challenge with OVA aerosol and instillation of poly(cytidylic-inosinic). Fulacimstat (chymase inhibitor; Bayer) was used to determine the role of mast cell chymase in COL4A3 degradation. Patients with cystic fibrosis (n=14) and cystic fibrosis with allergic bronchopulmonary aspergillosis (ABPA; n=9) as well as patients with severe allergic uncontrolled asthma (n=19) were tested for COL4A3 degradation. Omalizumab (anti-IgE) treatment was assessed using the Asthma Control Test. RESULTS: Serum levels of C4Ma3 were increased in asthma in adults and children alike and linked to a more severe, exacerbating allergic asthma phenotype. In an experimental asthma mouse model, C4Ma3 was dependent on mast cell chymase. Serum C4Ma3 was significantly elevated in cystic fibrosis plus ABPA and at baseline predicted the success of the anti-IgE therapy in allergic, uncontrolled asthmatics (diagnostic OR 31.5). CONCLUSION: C4Ma3 levels depend on lung mast cell chymase and are increased in a severe, exacerbating allergic asthma phenotype. C4Ma3 may serve as a novel biomarker to predict anti-IgE therapy response
- …