105 research outputs found

    Sequential memory-guided saccades and target selection: a neural model of the frontal eye fields

    Get PDF
    AbstractWe present a neural model of the frontal eye fields. It consists of several retinotopic arrays of neuron-like units that are recurrently connected. The network is trained to make memory-guided saccades to sequentially flashed targets that appear at arbitrary locations. This task is interesting because the large number of possible sequences does not permit a pre-learned response. Instead locations and their priority must be maintained in active working memory. The network learns to perform the task. Surprisingly, after training it can also select targets in visual search tasks. When targets are shown in parallel it chooses them according to their salience. Its search behavior is comparable to that of humans. It exhibits saccadic averaging, increased reaction times with more distractors, latency vs accuracy trade-offs, and inhibition of return. Analysis of the network shows that it operates like a queue, storing the potential targets in sequence for later execution. A small number of unit types are sufficient to encode this information, but the manner of coding is non-obvious. Units respond to multiple targets similar to quasi-visual cells recently studied [Exp. Brain Res. 130 (2000) 433]. Predictions are made that can be experimentally tested

    Intramuscular coherence enables robust assessment of modulated supra-spinal input in human gait: an inter-dependence study of visual task and walking speed

    Full text link
    Intramuscular high-frequency coherence is increased during visually guided treadmill walking as a consequence of increased supra-spinal input. The influence of walking speed on intramuscular coherence and its inter-trial reproducibility need to be established before adoption as a functional gait assessment tool in clinical settings. Here, fifteen healthy controls performed a normal and a target walking task on a treadmill at various speeds (0.3 m/s, 0.5 m/s, 0.9 m/s, and preferred) during two sessions. Intramuscular coherence was calculated between two surface EMG recordings sites of the Tibialis anterior muscle during the swing phase of walking. The results were averaged across low-frequency (5-14 Hz) and high-frequency (15-55 Hz) bands. The effect of speed, task, and time on mean coherence was assessed using three-way repeated measures ANOVA. Reliability and agreement were calculated with the intra-class correlation coefficient and Bland-Altman method, respectively. Intramuscular coherence during target walking was significantly higher than during normal walking across all walking speeds in the high-frequency band as obtained by the three-way repeated measures ANOVA. Interaction effects between task and speed were found for the low- and high-frequency bands, suggesting that task-dependent differences increase at higher walking speeds. Reliability of intramuscular coherence was moderate to excellent for most normal and target walking tasks in all frequency bands. This study confirms previous reports of increased intramuscular coherence during target walking, while providing first evidence for reproducibility and robustness of this measure as a requirement to investigate supra-spinal input.Trial registration Registry number/ClinicalTrials.gov Identifier: NCT03343132, date of registration 2017/11/17

    Visual crowding in driving

    Get PDF
    Acknowledgments: This work was funded in part by NIH Grant 1R01CA236793-01.Peer reviewedPublisher PD

    Intramuscular coherence during challenging walking in incomplete spinal cord injury: Reduced high-frequency coherence reflects impaired supra-spinal control

    Full text link
    Individuals regaining reliable day-to-day walking function after incomplete spinal cord injury (iSCI) report persisting unsteadiness when confronted with walking challenges. However, quantifiable measures of walking capacity lack the sensitivity to reveal underlying impairments of supra-spinal locomotor control. This study investigates the relationship between intramuscular coherence and corticospinal dynamic balance control during a visually guided Target walking treadmill task. In thirteen individuals with iSCI and 24 controls, intramuscular coherence and cumulant densities were estimated from pairs of Tibialis anterior surface EMG recordings during normal treadmill walking and a Target walking task. The approximate center of mass was calculated from pelvis markers. Spearman rank correlations were performed to evaluate the relationship between intramuscular coherence, clinical parameters, and center of mass parameters. In controls, we found that the Target walking task results in increased high-frequency (21-44 Hz) intramuscular coherence, which negatively related to changes in the center of mass movement, whereas this modulation was largely reduced in individuals with iSCI. The impaired modulation of high-frequency intramuscular coherence during the Target walking task correlated with neurophysiological and functional readouts, such as motor-evoked potential amplitude and outdoor mobility score, as well as center of mass trajectory length. The Target walking effect, the difference between Target and Normal walking intramuscular coherence, was significantly higher in controls than in individuals with iSCI [F(1.0,35.0) = 13.042, p < 0.001]. Intramuscular coherence obtained during challenging walking in individuals with iSCI may provide information on corticospinal gait control. The relationships between biomechanics, clinical scores, and neurophysiology suggest that intramuscular coherence assessed during challenging tasks may be meaningful for understanding impaired supra-spinal control in individuals with iSCI

    Intramuscular coherence enables robust assessment of modulated supra-spinal input in human gait : an inter-dependence study of visual task and walking speed

    Get PDF
    Intramuscular high-frequency coherence is increased during visually guided treadmill walking as a consequence of increased supra-spinal input. The influence of walking speed on intramuscular coherence and its inter-trial reproducibility need to be established before adoption as a functional gait assessment tool in clinical settings. Here, fifteen healthy controls performed a normal and a target walking task on a treadmill at various speeds (0.3 m/s, 0.5 m/s, 0.9 m/s, and preferred) during two sessions. Intramuscular coherence was calculated between two surface EMG recordings sites of the Tibialis anterior muscle during the swing phase of walking. The results were averaged across low-frequency (5-14 Hz) and high-frequency (15-55 Hz) bands. The effect of speed, task, and time on mean coherence was assessed using three-way repeated measures ANOVA. Reliability and agreement were calculated with the intra-class correlation coefficient and Bland-Altman method, respectively. Intramuscular coherence during target walking was significantly higher than during normal walking across all walking speeds in the high-frequency band as obtained by the three-way repeated measures ANOVA. Interaction effects between task and speed were found for the low- and high-frequency bands, suggesting that task-dependent differences increase at higher walking speeds. Reliability of intramuscular coherence was moderate to excellent for most normal and target walking tasks in all frequency bands. This study confirms previous reports of increased intramuscular coherence during target walking, while providing first evidence for reproducibility and robustness of this measure as a requirement to investigate supra-spinal input.Trial registration Registry number/ClinicalTrials.gov Identifier: NCT03343132, date of registration 2017/11/17

    Mind your step : Target walking task reveals gait disturbance in individuals with incomplete spinal cord injury

    Get PDF
    BACKGROUND: Walking over obstacles requires precise foot placement while maintaining balance control of the center of mass (CoM) and the flexibility to adapt the gait patterns. Most individuals with incomplete spinal cord injury (iSCI) are capable of overground walking on level ground; however, gait stability and adaptation may be compromised. CoM control was investigated during a challenging target walking (TW) task in individuals with iSCI compared to healthy controls. The hypothesis was that individuals with iSCI, when challenged with TW, show a lack of gait pattern adaptability which is reflected by an impaired adaptation of CoM movement compared to healthy controls. METHODS: A single-center controlled diagnostic clinical trial with thirteen participants with iSCI (0.3-24 years post injury; one subacute and twelve chronic) and twelve healthy controls was conducted where foot and pelvis kinematics were acquired during two conditions: normal treadmill walking (NW) and visually guided target walking (TW) with handrail support, during which participants stepped onto projected virtual targets synchronized with the moving treadmill surface. Approximated CoM was calculated from pelvis markers and used to calculate CoM trajectory length and mean CoM Euclidean distance TW-NW (primary outcome). Nonparametric statistics, including spearman rank correlations, were performed to evaluate the relationship between clinical parameter, outdoor mobility score, performance, and CoM parameters (secondary outcome). RESULTS: Healthy controls adapted to TW by decreasing anterior-posterior and vertical CoM trajectory length (p < 0.001), whereas participants with iSCI reduced CoM trajectory length only in the vertical direction (p = 0.002). Mean CoM Euclidean distance TW-NW correlated with participants' neurological level of injury (R = 0.76, p = 0.002) and CoM trajectory length (during TW) correlated with outdoor mobility score (R = - 0.64, p = 0.026). CONCLUSIONS: This study demonstrated that reduction of CoM movement is a common strategy to cope with TW challenge in controls, but it is impaired in individuals with iSCI. In the iSCI group, the ability to cope with gait challenges worsened the more rostral the level of injury. Thus, the TW task could be used as a gait challenge paradigm in ambulatory iSCI individuals. Trial registration Registry number/ ClinicalTrials.gov Identifier: NCT03343132, date of registration 2017/11/17

    Delirium is associated with an increased morbidity and in-hospital mortality in cancer patients : results from a prospective cohort study

    Get PDF
    Erworben im Rahmen der Schweizer Nationallizenzen (http://www.nationallizenzen.ch)Objective: Delirium is a frequent complication in advanced cancer patients, among whom it is frequently underdiagnosed and inadequately treated. To date, evidence on risk factors and the prognostic impact of delirium on outcomes remains sparse in this patient population. Method: In this prospective observational cohort study at a single tertiary-care center, 1,350 cancer patients were enrolled. Simple and multiple logistic regression models were utilized to identify associations between predisposing and precipitating factors and delirium. Cox proportional-hazards models were used to estimate the effect of delirium on death rate. Results: In our patient cohort, the prevalence of delirium was 34.3%. Delirium was associated inter alia with prolonged hospitalization, a doubling of care requirements, increased healthcare costs, increased need for institutionalization (OR 3.22), and increased mortality (OR 8.78). Predisposing factors for delirium were impaired activity (OR 10.82), frailty (OR 4.75); hearing (OR 2.23) and visual impairment (OR 1.89), chronic pneumonitis (OR 2.62), hypertension (OR 1.46), and renal insufficiency (OR 1.82). Precipitating factors were acute renal failure (OR 7.50), pressure sores (OR 3.78), pain (OR 2.86), and cystitis (OR 1.32). On multivariate Cox regression, delirium increased the mortality risk sixfold (HR 5.66). Age ≥ 65 years and comorbidities further doubled the mortality risk of delirious patients (HR 1.77; HR 2.05). Significance of results: Delirium is common in cancer patients and associated with increased morbidity and mortality. Systematically categorizing predisposing and precipitating factors might yield new strategies for preventing and managing delirium in cancer patients
    corecore