17 research outputs found

    As Far as the Eye Can See: Relationship between Psychopathic Traits and Pupil Response to Affective Stimuli

    Get PDF
    Psychopathic individuals show a range of affective processing deficits, typically associated with the interpersonal/affective component of psychopathy. However, previous research has been inconsistent as to whether psychopathy, within both offender and community populations, is associated with deficient autonomic responses to the simple presentation of affective stimuli. Changes in pupil diameter occur in response to emotionally arousing stimuli and can be used as an objective indicator of physiological reactivity to emotion. This study used pupillometry to explore whether psychopathic traits within a community sample were associated with hypo-responsivity to the affective content of stimuli. Pupil activity was recorded for 102 adult (52 female) community participants in response to affective (both negative and positive affect) and affectively neutral stimuli, that included images of scenes, static facial expressions, dynamic facial expressions and sound-clips. Psychopathic traits were measured using the Triarchic Psychopathy Measure. Pupil diameter was larger in response to negative stimuli, but comparable pupil size was demonstrated across pleasant and neutral stimuli. A linear relationship between subjective arousal and pupil diameter was found in response to sound-clips, but was not evident in response to scenes. Contrary to predictions, psychopathy was unrelated to emotional modulation of pupil diameter across all stimuli. The findings were the same when participant gender was considered. This suggests that psychopathy within a community sample is not associated with autonomic hypo-responsivity to affective stimuli, and this effect is discussed in relation to later defensive/appetitive mobilisation deficits

    Reducing the environmental impact of surgery on a global scale: systematic review and co-prioritization with healthcare workers in 132 countries

    Get PDF
    Background Healthcare cannot achieve net-zero carbon without addressing operating theatres. The aim of this study was to prioritize feasible interventions to reduce the environmental impact of operating theatres. Methods This study adopted a four-phase Delphi consensus co-prioritization methodology. In phase 1, a systematic review of published interventions and global consultation of perioperative healthcare professionals were used to longlist interventions. In phase 2, iterative thematic analysis consolidated comparable interventions into a shortlist. In phase 3, the shortlist was co-prioritized based on patient and clinician views on acceptability, feasibility, and safety. In phase 4, ranked lists of interventions were presented by their relevance to high-income countries and low–middle-income countries. Results In phase 1, 43 interventions were identified, which had low uptake in practice according to 3042 professionals globally. In phase 2, a shortlist of 15 intervention domains was generated. In phase 3, interventions were deemed acceptable for more than 90 per cent of patients except for reducing general anaesthesia (84 per cent) and re-sterilization of ‘single-use’ consumables (86 per cent). In phase 4, the top three shortlisted interventions for high-income countries were: introducing recycling; reducing use of anaesthetic gases; and appropriate clinical waste processing. In phase 4, the top three shortlisted interventions for low–middle-income countries were: introducing reusable surgical devices; reducing use of consumables; and reducing the use of general anaesthesia. Conclusion This is a step toward environmentally sustainable operating environments with actionable interventions applicable to both high– and low–middle–income countries

    Reducing the environmental impact of surgery on a global scale: systematic review and co-prioritization with healthcare workers in 132 countries

    Get PDF
    Abstract Background Healthcare cannot achieve net-zero carbon without addressing operating theatres. The aim of this study was to prioritize feasible interventions to reduce the environmental impact of operating theatres. Methods This study adopted a four-phase Delphi consensus co-prioritization methodology. In phase 1, a systematic review of published interventions and global consultation of perioperative healthcare professionals were used to longlist interventions. In phase 2, iterative thematic analysis consolidated comparable interventions into a shortlist. In phase 3, the shortlist was co-prioritized based on patient and clinician views on acceptability, feasibility, and safety. In phase 4, ranked lists of interventions were presented by their relevance to high-income countries and low–middle-income countries. Results In phase 1, 43 interventions were identified, which had low uptake in practice according to 3042 professionals globally. In phase 2, a shortlist of 15 intervention domains was generated. In phase 3, interventions were deemed acceptable for more than 90 per cent of patients except for reducing general anaesthesia (84 per cent) and re-sterilization of ‘single-use’ consumables (86 per cent). In phase 4, the top three shortlisted interventions for high-income countries were: introducing recycling; reducing use of anaesthetic gases; and appropriate clinical waste processing. In phase 4, the top three shortlisted interventions for low–middle-income countries were: introducing reusable surgical devices; reducing use of consumables; and reducing the use of general anaesthesia. Conclusion This is a step toward environmentally sustainable operating environments with actionable interventions applicable to both high– and low–middle–income countries

    New concept for quantification of similarity relates entropy and energy of objects : first and second law entangled group behavior of micro black holes expected

    No full text
    International audienceWhen the free energy of similar but distinct molecule-sized objects is plotted against the temperature at which their energy and entropy contributions cancel, a highly significant linear dependence results from which the degree of similarity between the distinctly different members within the group of objects can be quantified and a relationship between energy and entropy is derived. This energy-entropy relationship entirely reflects the mathematical structure of thermodynamic equations, is in this sense fundamental and therefore does probably not dependent on material nor scale. The energy-entropy relationship is likely to be of general interest in molecular biology, population biology, synthetic biology, biophysics, chemical thermodynamics, systems chemistry and physics, most notably in particle physics and cosmology. In physics we predict a consistent and perhaps testable way of classifying micro black holes, to be generated in future Large Hadron Collider experiments, by their gravitational energy and area entropy

    Model structure and control of bone remodeling: A theoretical study

    No full text
    It is generally accepted that RANKL is highly expressed in osteoblast precursor cells while OPG is highly expressed in mature osteoblasts, but to date no functional utility to the BMU has been proposed for this particular ligand–decoy–receptor expression profile. As discovered in the mid 90s, the RANK–RANKL–OPG signaling cascade is a major signaling pathway regulating bone remodeling. In this paper we study theoretically the functional implications of particular RANKL/OPG expression profiles on bone volume. For this purpose we formulate an extended bone–cell dynamics model describing functional behaviour of basic multicellular units (BMUs) responsible for bone resorption and formation. This model incorporates the RANK–RANKL–OPG signaling together with the regulating action of TGF-β on bone cells. The bone–cell population model employed here builds on the work of Lemaire et al. (2004) [1], but incorporates the following significant modifications: (i) addition of a rate equation describing changes in bone volume with time as the key ‘output function’ tracking functional behaviour of BMUs, (ii) a rate equation describing release of TGF-β from the bone matrix, (iii) expression of OPG and RANKL on both osteoblastic cell lines, and (iv) modified activator/repressor functions. Using bone volume as a functional selection criterion, we find that there is a preferred arrangement for ligand expression on particular cell types, and further, that this arrangement coincides with biological observations. We then investigate the model parameter space combinatorially, searching for preferred ‘groupings’ of changes in differentiation rates of various cell types. Again, a criterion of bone volume change is employed to identify possible ways of optimally controlling BMU responses. While some combinations of changes in differentiation rates are clearly unrealistic, other combinations of changes in differentiation rates are potentially functionally significant. Most importantly, the combination of parameter changes representing the signaling pathway for TGF-β gives a unique result that appears to have a clear biological rationale. The methodological approach for the investigation of model structure described here offers a theoretical explanation as to why TGF-β has its particular suite of biological effects on bone–cell differentiation rates

    Theoretical investigation of the role of the RANK–RANKL–OPG system in bone remodeling

    No full text
    The RANK–RANKL–OPG system is an essential signaling pathway involved in bone cell–cell communication, with ample evidence that modification of the RANK–RANKL–OPG signaling pathway has major effects on bone remodeling. The first focus of this paper is to demonstrate that a theoretical model of bone cell–cell interactions is capable of qualitatively reproducing changes in bone associated with RANK–RANKL–OPG signaling. To do this we consider either biological experiments or bone diseases related to receptor and/or ligand deficiencies, including RANKL over-expression, ablation of OPG production and/or RANK receptor modifications. The second focus is to investigate a wide range of possible therapeutic strategies for re-establishing bone homeostasis for various pathologies of the RANK–RANKL–OPG pathway. These simulations indicate that bone diseases associated with the RANK–RANKL–OPG pathway are very effective in triggering bone resorption compared to bone formation. These results align with Hofbauer's “convergence hypothesis”, which states that catabolic bone diseases most effectively act through the RANK–RANKL–OPG system. Additionally, we demonstrate that severity of catabolic bone diseases strongly depends on how many components of this pathway are affected. Using optimization algorithms and the theoretical model, we identify a variety of successful “virtual therapies” for different disease states using both single and dual therapies

    Elucidation of Exosome Migration Across the Blood-Brain Barrier Model In Vitro

    No full text
    The delivery of therapeutics to the central nervous system remains a major challenge in part due to the presence of the blood-brain barrier (BBB). Recently, cell-derived vesicles, particularly exosomes, have emerged as an attractive vehicle for targeting drugs to the brain, but whether or how they cross the BBB remains unclear. Here, we investigated the interactions between exosomes and brain microvascular endothelial cells (BMECs) in vitro under conditions that mimic the healthy and inflamed BBB in vivo. Transwell assays revealed that luciferase-carrying exosomes can cross a BMEC monolayer under stroke-like, inflamed conditions (TNF-α activated) but not under normal conditions. Confocal microscopy showed that exosomes are internalized by BMECs through endocytosis, co-localize with endosomes, in effect primarily utilizing the transcellular route of crossing. Together, these results indicate that cell-derived exosomes can cross the BBB model under stroke-like conditions in vitro. This study encourages further development of engineered exosomes as drug delivery vehicles or tracking tools for treating or monitoring neurological diseases
    corecore