600 research outputs found
Insuficiência renal aguda secundária à síndrome compartimental abdominal: relato de quatro casos e revisão da literatura
We report on 4 cases of abdominal compartment syndrome complicated by acute renal failure that were promptly reversed by different abdominal decompression methods. Case 1: A 57-year-old obese woman in the post-operative period after giant incisional hernia correction with an intra-abdominal pressure of 24 mm Hg. She was sedated and curarized, and the intra-abdominal pressure fell to 15 mm Hg. Case 2: A 73-year-old woman with acute inflammatory abdomen was undergoing exploratory laparotomy when a hypertensive pneumoperitoneum was noticed. During the surgery, enhancement of urinary output was observed. Case 3: An 18-year-old man who underwent hepatectomy and developed coagulopathy and hepatic bleeding that required abdominal packing, developed oliguria with a transvesical intra-abdominal pressure of 22 mm Hg. During reoperation, the compresses were removed with a prompt improvement in urinary flow. Case 4: A 46-year-old man with hepatic cirrhosis was admitted after incisional hernia repair with intra-abdominal pressure of 16 mm Hg. After paracentesis, the intra-abdominal pressure fell to 11 mm Hg.Descrevemos quatro casos de síndrome compartimental abdominal complicadas por insuficiência renal aguda e prontamente revertidas por diferentes métodos de descompressão abdominal. Caso 1: paciente obesa de 57 anos no pós-operatório de correção de hérnia incisional gigante com pressão intra-abdominal de 24 mm Hg. Após sedação e curarização, a PIA caiu para 15 mm Hg. Caso 2: paciente de 73 anos com abdômem agudo inflamatório submetida à laparotomia exploradora quando foi diagnosticado pneumoperitôneo hipertensivo. Durante a cirurgia houve melhora da diurese. Caso 3: paciente de 18 anos submetido a hepactetomia apresentou coagulopatia e sangramento hepático necessitando tamponamento com compressas, evoluindo com oligúria e PIA de 22 mm Hg. Na reoperação, após remoção das compressas houve melhora importante do fluxo urinário. Caso 4: paciente de 46 anos com cirrose hepática foi admitido após correção de hérnia incisional com pressão intra-abdominal de 16 mm Hg. Após paracentese, a pressão intra-abdominal caiu para 11 mm Hg
Anytime Ranking for Impact-Ordered Indexes
The ability for a ranking function to control its own execution time is useful for managing load, reigning in outliers, and adapting to different types of queries. We propose a simple yet effective anytime algorithm for impact-ordered indexes that builds on a score-at-a-time query evaluation strategy. In our approach, postings segments are processed in decreasing order of their impact scores, and the algorithm early terminates when a specified number of postings have been processed. With a simple linear model and a few training topics, we can determine this threshold given a time budget in milliseconds. Experiments on two web test collections show that our approach can accurately control query evaluation latency and that aggressive limits on execution time lead to minimal decreases in effectiveness
An arginine deprivation response pathway is induced in Leishmania during macrophage invasion
Amino acid sensing is an intracellular function that supports nutrient homeostasis, largely through controlled release of amino acids from lysosomal pools. The intracellular pathogen Leishmania resides and proliferates within human macrophage phagolysosomes. Here we describe a new pathway in Leishmania that specifically senses the extracellular levels of arginine, an amino acid that is essential for the parasite. During infection, the macrophage arginine pool is depleted due to its use to produce metabolites (NO and polyamines) that constitute part of the host defense response and its suppression, respectively. We found that parasites respond to this shortage of arginine by up-regulating expression and activity of the Leishmania arginine transporter (LdAAP3), as well as several other transporters. Our analysis indicates the parasite monitors arginine levels in the environment rather than the intracellular pools. Phosphoproteomics and genetic analysis indicates that the arginine-deprivation response is mediated through a mitogen-activated protein kinase-2-dependent signaling cascade
A Translation Initiation Element Specific to mRNAs with Very Short 5′UTR that Also Regulates Transcription
Transcription is controlled by cis regulatory elements, which if localized downstream to the transcriptional start site (TSS), in the 5′UTR, could influence translation as well. However presently there is little evidence for such composite regulatory elements. We have identified by computational analysis an abundant element located downstream to the TSS up to position +30, which controls both transcription and translation. This element has an invariable ATG sequence, which serves as the translation initiation codon in 64% of the genes bearing it. In these genes the initiating AUG is preceded by an extremely short 5′UTR. We show that translation in vitro and in vivo is initiated exclusively from the AUG of this motif, and that the AUG flanking sequences create a strong translation initiation context. This motif is distinguished from the well-known Kozak in its unique ability to direct efficient and accurate translation initiation from mRNAs with a very short 5′UTR. We therefore named it TISU for Translation Initiator of Short 5′UTR. Interestingly, this translation initiation element is also an essential transcription regulatory element of Yin Yang 1. Our characterization of a common transcription and translation element points to a link between mammalian transcription and translation initiation
Decomposition, Reformulation, and Diving in University Course Timetabling
In many real-life optimisation problems, there are multiple interacting
components in a solution. For example, different components might specify
assignments to different kinds of resource. Often, each component is associated
with different sets of soft constraints, and so with different measures of soft
constraint violation. The goal is then to minimise a linear combination of such
measures. This paper studies an approach to such problems, which can be thought
of as multiphase exploitation of multiple objective-/value-restricted
submodels. In this approach, only one computationally difficult component of a
problem and the associated subset of objectives is considered at first. This
produces partial solutions, which define interesting neighbourhoods in the
search space of the complete problem. Often, it is possible to pick the initial
component so that variable aggregation can be performed at the first stage, and
the neighbourhoods to be explored next are guaranteed to contain feasible
solutions. Using integer programming, it is then easy to implement heuristics
producing solutions with bounds on their quality.
Our study is performed on a university course timetabling problem used in the
2007 International Timetabling Competition, also known as the Udine Course
Timetabling Problem. In the proposed heuristic, an objective-restricted
neighbourhood generator produces assignments of periods to events, with
decreasing numbers of violations of two period-related soft constraints. Those
are relaxed into assignments of events to days, which define neighbourhoods
that are easier to search with respect to all four soft constraints. Integer
programming formulations for all subproblems are given and evaluated using ILOG
CPLEX 11. The wider applicability of this approach is analysed and discussed.Comment: 45 pages, 7 figures. Improved typesetting of figures and table
Identification and functional characterisation of CRK12:CYC9, a novel cyclin-dependent kinase (CDK)-cyclin complex in Trypanosoma brucei
The protozoan parasite, Trypanosoma brucei, is spread by the tsetse fly and causes trypanosomiasis in humans and animals. Both the life cycle and cell cycle of the parasite are complex. Trypanosomes have eleven cdc2-related kinases (CRKs) and ten cyclins, an unusually large number for a single celled organism. To date, relatively little is known about the function of many of the CRKs and cyclins, and only CRK3 has previously been shown to be cyclin-dependent in vivo. Here we report the identification of a previously uncharacterised CRK:cyclin complex between CRK12 and the putative transcriptional cyclin, CYC9. CRK12:CYC9 interact to form an active protein kinase complex in procyclic and bloodstream T. brucei. Both CRK12 and CYC9 are essential for the proliferation of bloodstream trypanosomes in vitro, and we show that CRK12 is also essential for survival of T. brucei in a mouse model, providing genetic validation of CRK12:CYC9 as a novel drug target for trypanosomiasis. Further, functional characterisation of CRK12 and CYC9 using RNA interference reveals roles for these proteins in endocytosis and cytokinesis, respectively
Detection of Light Images by Simple Tissues as Visualized by Photosensitized Magnetic Resonance Imaging
In this study, we show how light can be absorbed by the body of a living rat due to an injected pigment circulating in the blood stream. This process is then physiologically translated in the tissue into a chemical signature that can be perceived as an image by magnetic resonance imaging (MRI). We previously reported that illumination of an injected photosynthetic bacteriochlorophyll-derived pigment leads to a generation of reactive oxygen species, upon oxygen consumption in the blood stream. Consequently, paramagnetic deoxyhemoglobin accumulating in the illuminated area induces changes in image contrast, detectable by a Blood Oxygen Level Dependent (BOLD)-MRI protocol, termed photosensitized (ps)MRI. Here, we show that laser beam pulses synchronously trigger BOLD-contrast transients in the tissue, allowing representation of the luminous spatiotemporal profile, as a contrast map, on the MR monitor. Regions with enhanced BOLD-contrast (7-61 fold) were deduced as illuminated, and were found to overlap with the anatomical location of the incident light. Thus, we conclude that luminous information can be captured and translated by typical oxygen exchange processes in the blood of ordinary tissues, and made visible by psMRI (Fig. 1). This process represents a new channel for communicating environmental light into the body in certain analogy to light absorption by visual pigments in the retina where image perception takes place in the central nervous system. Potential applications of this finding may include: non-invasive intra-operative light guidance and follow-up of photodynamic interventions, determination of light diffusion in opaque tissues for optical imaging and possible assistance to the blind
- …