82 research outputs found
Climate and southern Africa's water-energy-food nexus
In southern Africa, the connections between climate and the water-energy-food nexus are strong. Physical and socioeconomic exposure to climate is high in many areas and in crucial economic sectors. Spatial interdependence is also high, driven for example, by the regional extent of many climate anomalies and river basins and aquifers that span national boundaries. There is now strong evidence of the effects of individual climate anomalies, but associations between national rainfall and Gross Domestic Product and crop production remain relatively weak. The majority of climate models project decreases in annual precipitation for southern Africa, typically by as much as 20% by the 2080s. Impact models suggest these changes would propagate into reduced water availability and crop yields. Recognition of spatial and sectoral interdependencies should inform policies, institutions and investments for enhancing water, energy and food security. Three key political and economic instruments could be strengthened for this purpose; the Southern African Development Community, the Southern African Power Pool, and trade of agricultural products amounting to significant transfers of embedded water
Challenges to adaptation: a fundamental concept for the shared socio-economic pathways and beyond
The framework for the new scenarios being developed for climate research calls
for the development of a set of Shared Socioeconomic Pathways (SSPs), which are meant to
differ in terms of their challenges to mitigation and challenges to adaptation. In order for the
scenario process to fulfill its goals, the research and policy communities need to develop a
shared understanding of these concepts. This paper focuses on challenges to adaptation. We
begin by situating this new concept in the context of the rich literatures related to inter alia
adaptation, vulnerability, and resilience. We argue that a proper characterization of challenges to adaptation requires a rich, exploration of the concept, which goes beyond mere
description. This has a number of implications for the operationalization of the concept in
the basic and extended versions of the SSPs. First, the elements comprising challenges to
adaptation must include a wide range of socioeconomic and even some (non-climatic)
biophysical factors. Second, careful consideration must be given to differences in these
factors across scales, as well as cross-scale interactions. Third, any representation of the
concept will require both quantitative and qualitative elements. The scenario framework
offers the opportunity for the SSPs and full scenarios to be of greater value than has been the
case in past exercises to both Integrated Assessment Modeling (IAM) and Impacts,Adaptation, and Vulnerability (IAV) researchers, but this will require a renegotiation of the
traditional, primarily unidirectional relationship between the two communities
Capturing Single Cell Genomes of Active Polysaccharide Degraders: An Unexpected Contribution of Verrucomicrobia
Microbial hydrolysis of polysaccharides is critical to ecosystem functioning and is of great interest in diverse biotechnological applications, such as biofuel production and bioremediation. Here we demonstrate the use of a new, efficient approach to recover genomes of active polysaccharide degraders from natural, complex microbial assemblages, using a combination of fluorescently labeled substrates, fluorescence-activated cell sorting, and single cell genomics. We employed this approach to analyze freshwater and coastal bacterioplankton for degraders of laminarin and xylan, two of the most abundant storage and structural polysaccharides in nature. Our results suggest that a few phylotypes of Verrucomicrobia make a considerable contribution to polysaccharide degradation, although they constituted only a minor fraction of the total microbial community. Genomic sequencing of five cells, representing the most predominant, polysaccharide-active Verrucomicrobia phylotype, revealed significant enrichment in genes encoding a wide spectrum of glycoside hydrolases, sulfatases, peptidases, carbohydrate lyases and esterases, confirming that these organisms were well equipped for the hydrolysis of diverse polysaccharides. Remarkably, this enrichment was on average higher than in the sequenced representatives of Bacteroidetes, which are frequently regarded as highly efficient biopolymer degraders. These findings shed light on the ecological roles of uncultured Verrucomicrobia and suggest specific taxa as promising bioprospecting targets. The employed method offers a powerful tool to rapidly identify and recover discrete genomes of active players in polysaccharide degradation, without the need for cultivation
Climate change responses among the Maasai Community in Kenya
© 2017, Springer Science+Business Media B.V. The impacts of climate change to the dryland areas of East Africa are especially strong, especially if it is considered that these areas have weak institutions and governance systems. Climate change has also affected many rural communities in a severe way, reducing crop yields and sometimes causing crop failure. In Kenya and Tanzania, where drylands cover over around 80 and 50% of their respective land areas, rural populations have been especially affected. Among them is the tribal group of the Maasai, legendary nomad warriors, who have been suffering from persistent droughts and the negative impacts on their cattle herds. This paper describes how climate change affects the Maasai communities in Kenya and the changes seen in their habits and diet, in order to adapt to a changing climate
Assessing the feasibility of adaptation options: methodological advancements and directions for climate adaptation research and practice
The Paris Agreement put adaptation prominently on the global climate action agenda. Despite a surge in research and praxis-based knowledge on adaptation, a critical policy roadblock is synthesizing and assessing this burgeoning evidence. We develop an approach to assess the multidimensional feasibility of adaptation options in a robust and transparent manner, providing direction for global climate policy and identifying knowledge gaps to further future climate research. The approach, which was tested in the IPCC Special Report on 1.5 °C (SR1.5) to assess 23 adaptation options, is underpinned by a systematic review of recent literature, expert elicitation, and iterative peer review. It responds to the challenge of limited agreement on adaptation indicators, lack of fine-scale adaptation data, and challenges of assessing synergies and trade-offs with mitigation. The findings offer methodological insights into how future assessments such as the IPCC Assessment Report (AR) six and regional, national, and sectoral assessment exercises could assess adaptation feasibility and synthesize the growing body of knowledge on climate change adaptation
Recommended from our members
Managing the Risks from Climate Extremes at the Local Level
Disasters are most acutely experienced at the local level (high agreement, robust evidence). The reality of disasters in terms of loss of life and property occurs in local places and to local people. These localized impacts can then cascade to have national and international consequences. In this chapter, local refers to a range of places, social groupings, experience, management, institutions, conditions, and sets of knowledge that exist at a sub-national scale. [5.1] Developing strategies for disaster risk management in the context of climate change requires a range of approaches, informed by and customized to specific local circumstances (high agreement, robust evidence). These differences and the context (national to global, urban to rural) in which they are situated shape local vulnerability and local impacts. [5.1] The impacts of climate extremes and weather events may threaten human security at the local level (high agreement, medium evidence). Vulnerability at the local level is attributed to social, political, and economic conditions and drivers including localized environmental degradation and climate change. Addressing disaster risk and climate extremes at the local level requires attention to much wider issues relating to sustainable development. [5.1] While structural measures provide some protection from disasters, they may also create a false sense of safety (high agreement, robust evidence). Such measures result in increased property development, heightened population density, and more disaster exposure. Current regulations and design levels for structural measures may be inadequate under conditions of climate change
- …