80 research outputs found
Screening of Mineral Elements in Cistus ladanifer and Cistus libanotis Essential Oils and their Leaves
peer reviewedThe aim of this study was to determine the levels of mineral compounds in Cistus ladanifer and Cistus libanotis growing in Eastern Morocco from two different regions Jerada (arid climate) and Tafoughalt (humid climate). A total of fifteen elements (Cd, Co, Cr, Cu, Hg, Na, Ni, P, Pb, Zn, Al, Ca, Fe, K and Mg) has been measured by inductive coupled plasma atomic emission spectrometry. Their concentrations have been found to vary in leaves and their essential oils. From the results of the study, P, Al, Ca, Fe, K and Mg are highest in all the samples analysed. Cr and Pb were not detected in essential oil of Cistus libanotis from Jerada and Tafoughalt, respectively. These plants were found to contain appreciable amounts of the elements K, Ca, Fe, Mg, P, Al, Ni, Li, Zn and Cu Witch are important in many biological mechanisms. This study also provides a comprehensive survey of the concentration of elements in plants due to their wide utilisation as herbal fusion or decoction in Eastern Morocco
Small Horizontal Wind Turbine Design and Aerodynamic Analysis Using Q-Blade Software
Wind energy is one of the most common and natural resources that play a huge role in energy sector, and due to the increasing demand to improve the efficiency of wind turbines and the development of the energy field, improvements have been made to design a suitable wind turbine and obtain the most energy efficiency possible from wind. In this paper, a horizontal wind turbine blade operating under low wind speed was designed using the (BEM) theory, where the design of the turbine rotor blade is a difficult task due to the calculations involved in the design process. To understand the behavior of the turbine blade, the QBlade program was used to design and simulate the turbine rotor blade during working conditions. The design variables such as (chord length and torsion angle) affecting the performance of wind turbines were studied. Aileron (NACA4711) was selected for sixteen different sections of the blade with a length of (155 cm) both (power factor, torque coefficient, lift coefficient, drag coefficient, lift-to-drag coefficient ratio) where high-accuracy results were obtained and it was found that the best performance in which the turbine rotor can operate is when the(tip speed ratio) is equal to (7). In addition, a power factor was obtained (Cp = 0.4742), not exceeding the Betz limit (0.59%). It is good efficiency for a small wind turbine, and it turns out that the design of a small horizontal wind turbine with three blades is suitable for working in areas with low wind speed
Chemical composition and antioxidant activity of essential oil, various organic extracts of Cistus ladanifer and Cistus libanotis growing in Eastern Morocco
In the present work, we studied the chemical composition of the essential oil of Cistus ladanifer and Cistus libanotis growing in Eastern Morocco. The essential oils were obtained by hydrodistillation and their chemical composition was analysed using gas chromatography- mass spectrometry (GCâMS). Camphene, borneol, cyclohexanol-2, 2, 6 tremethyl, terpineol-4 and α-pinene were the main constituents of the essential oil of C. ladanifer, while in the essential oil of C. libanotis we obtained terpineol-4, Îł-terpinene, camphene, sabinene, α-terpinene and α-pinene. The antioxidant potential of various extracts (water, ethanol, ethanol: water (50:50), methanol, methanol: water (50:50), acetonitrile) and essential oils of C. ladanifer and C. libanotis were carried out by the method of 1,1-diphenyl-1-picrylhydrazylhydrate (DPPH) free radical scavenging. Total phenolic and flavonoid contents were determined. The result show that C. ladanifer of the leaves of methanol: water (50:50) extract had the highest value of total phenolic content and the lowest was present in ethanol: water (50:50) extract of the stem and acetonitrile extract of the flowers of C. libanotis. From our experimental results, the extract of flowers, fruit, stem and leaves of those plants showed highest potential as free radical scavengers.Keywords: Antioxidant, phenolics, flavonoids, essential oil, extracts, gas chromatography- mass spectrometry (GCâMS).African Journal of Biotechnology Vol. 12(34), pp. 5314-532
Ethnobotany Study of Medicinal Plants Used in the Treatment of Respiratory Diseases in the Middle Region of Oum Rbai
The ethnobotanical study carried out in the region of Oum Rbia (Morocco) made it possible to identify the medicinal plants used by the local population and to collect the maximum information on this use.
A survey of 1360 people from the region's population noted that 170 people use medicinal plants against respiratory diseases. Women accounted for 55.3% of the workforce versus 44.7% for men; Married people 70% against 28% for singles. The illiteracy rate is high (34.1%).
The leaves are the most widely used part of the plant. Infusion and decoction are the most commonly used methods for preparing traditional remedies.
The most widely used species in the treatment of respiratory diseases are: Origanun glandulosum, Eucalyptus globulus, Nigella sativa, Mentha pulegium, Lavandula stoechas, Zingiber officinale, Ammodaucus leucotrichus, Ficus carica. In addition, some species have toxicity either because of the ignorance of the necessary dose or because the people treated are affected by other diseases.
Thus, the survey made it possible to inventory 66 medicinal species which are divided into 36 plant families; Lamiaceae (21.2%), Myrtaceae (10.6%), Apiaceae (8.8%), Amaryllydaceae (7.7%) and Zingiberaceae (7.1%).
These results resulted in a catalog of medicinal plants used in the study area to treat respiratory diseases. It is a local know-how that must be considered as a heritage to be preserved and developed
Seasonal Variation (Winter vs. Summer) Crustacean Fauna of the Oualidia Lagoon, Morocco
The Oualidia lagoon on the Atlantic coast of Morocco provides important ecosystem services such as aquaculture, fisheries, tourism and high ecological and biological productivity. This is the first study to describe the spatio-temporal distribution of the crustacean community and potential controlling factors in the coastal waters of the Oualidia lagoon. Crustaceans were sampled with a Van Veen grab during two surveys in winter and summer 2013, and taxonomic composition and diversity were determined at 43 sampling sites. Of the eighteen crustacean taxa recorded, fifteen were new to Oualidia Lagoon. Sphaeroma serratum was the most abundant species in both seasons. Organic matter and chlorophyll a content were higher, temperature and salinity were lower in winter than in summer. The structure of the crustacean assemblages was characterised by the formation of two main clusters, organised according to a downstream gradient. Canonical Correspondence Analysis (CCA) showed that granulometry, organic matter and salinity strongly influenced the distribution pattern of crustaceans in the lagoon
Recommended from our members
Azapeptide activity-based probes for the SARS-CoV-2 main protease enable visualization of inhibition in infected cells
The COVID-19 pandemic has revealed the vulnerability of the modern, global society. With expected waves of future infections by SARS-CoV-2, treatment options for infected individuals will be crucial in order to decrease mortality and hospitalizations. The SARS-CoV-2 main protease is a validated drug target, for which the first inhibitor has been approved for use in patients. To facilitate future work on this drug target, we designed a solid-phase synthesis route towards azapeptide activity-based probes that are capped with a cysteine-reactive electrophile for covalent modification of the active site of Mpro. This design led to the most potent ABP for Mpro and one of the most potent inhibitors reported thus far. We demonstrate that this ABP can be used to visualize Mpro activity and target engagement by drugs in infected cells
Global shortage of technical agars: back to basics (resource management)
Bacteriological and technical agars are in short supply with potential consequences for research, public health, and clinical labs around the world. To diagnose bottlenecks and sustainability problems that may be putting the industry at risk, we analyzed the available time series for the global landings of Gelidium, the most important raw materials for the industry. Data on the harvest of Gelidium spp. have been reported since1912, when Japan was the only producer. After World War II the diversification of harvested species and producing countries resulted in a strong increase in global landings. Maximum harvest yields of almost 60,000 t year(-1) in the 1960s were sustained until the 1980s, after which landings decreased continuously to the present. In the 2010s, a reduction in the global production to about 25,000 t year(-1) was observed, which was lower than the yields of the 1950s. Landings by important producers such as Japan, Korea, Spain, and Portugal have collapsed. This is the ultimate cause of the present shortage of bacteriological and technical agars. However, an important factor at play is the concentration of the global landings of Gelidium in Morocco, as its relative contribution increased from 23% in the 1960s to the present 82%. Two specific bottlenecks were identified: restrictive export quotas of unprocessed Gelidium in favor of the national agar industry and resource management regulations that were apparently not enforced resulting in over-harvesting and resource decline. The global industry may well be dependent on resource management basics. Simple harvest statistics must be gathered such as the harvest effort and the variation of harvest yields along the harvest season. We discuss how this information is fundamental to manage the resource. The available harvest statistics are generally poor and limited and vary significantly among different sources of data. Probable confusions between dry and wet weight reporting and poor discrimination of the species harvested need to be resolved
Mechanism of Heparin Acceleration of Tissue Inhibitor of Metalloproteases-1 (TIMP-1) Degradation by the Human Neutrophil Elastase
Heparin has been shown to regulate human neutrophil elastase (HNE) activity. We have assessed the regulatory effect of heparin on Tissue Inhibitor of Metalloproteases-1 [TIMP-1] hydrolysis by HNE employing the recombinant form of TIMP-1 and correlated FRET-peptides comprising the TIMP-1 cleavage site. Heparin accelerates 2.5-fold TIMP-1 hydrolysis by HNE. The kinetic parameters of this reaction were monitored with the aid of a FRET-peptide substrate that mimics the TIMP-1 cleavage site in pre-steady-state conditionsby using a stopped-flow fluorescence system. The hydrolysis of the FRET-peptide substrate by HNE exhibits a pre-steady-state burst phase followed by a linear, steady-state pseudo-first-order reaction. The HNE acylation step (k2â=â21±1 sâ1) was much higher than the HNE deacylation step (k3â=â0.57±0.05 sâ1). The presence of heparin induces a dramatic effect in the pre-steady-state behavior of HNE. Heparin induces transient lag phase kinetics in HNE cleavage of the FRET-peptide substrate. The pre-steady-state analysis revealed that heparin affects all steps of the reaction through enhancing the ES complex concentration, increasing k1 2.4-fold and reducing kâ1 3.1-fold. Heparin also promotes a 7.8-fold decrease in the k2 value, whereas the k3 value in the presence of heparin was increased 58-fold. These results clearly show that heparin binding accelerates deacylation and slows down acylation. Heparin shifts the HNE pH activity profile to the right, allowing HNE to be active at alkaline pH. Molecular docking and kinetic analysis suggest that heparin induces conformational changes in HNE structure. Here, we are showing for the first time that heparin is able to accelerate the hydrolysis of TIMP-1 by HNE. The degradation of TIMP-1is associated to important physiopathological states involving excessive activation of MMPs
Comparative genomic and phylogeographic analysis of Mycobacterium leprae
Reductive evolution and massive pseudogene formation have shaped the 3.31-Mb genome of Mycobacterium leprae, an unculturable obligate pathogen that causes leprosy in humans. The complete genome sequence of M. leprae strain Br4923 from Brazil was obtained by conventional methods (6 x coverage), and Illumina resequencing technology was used to obtain the sequences of strains Thai53 (38 x coverage) and NHDP63 (46 x coverage) from Thailand and the United States, respectively. Whole-genome comparisons with the previously sequenced TN strain from India revealed that the four strains share 99.995% sequence identity and differ only in 215 polymorphic sites, mainly SNPs, and by 5 pseudogenes. Sixteen interrelated SNP subtypes were defined by genotyping both extant and extinct strains of M. leprae from around the world. The 16 SNP subtypes showed a strong geographical association that reflects the migration patterns of early humans and trade routes, with the Silk Road linking Europe to China having contributed to the spread of leprosy
SARS-CoV-2 infects the human kidney and drives fibrosis in kidney organoids
Kidney failure is frequently observed during and after COVID-19, but it remains elusive whether this is a direct effect of the virus. Here, we report that SARS-CoV-2 directly infects kidney cells and is associated with increased tubule-interstitial kidney fibrosis in patient autopsy samples. To study direct effects of the virus on the kidney independent of systemic effects of COVID-19, we infected human-induced pluripotent stem-cell-derived kidney organoids with SARS-CoV-2. Single-cell RNA sequencing indicated injury and dedifferentiation of infected cells with activation of profibrotic signaling pathways. Importantly, SARS-CoV-2 infection also led to increased collagen 1 protein expression in organoids. A SARS-CoV-2 protease inhibitor was able to ameliorate the infection of kidney cells by SARS-CoV-2. Our results suggest that SARS-CoV-2 can directly infect kidney cells and induce cell injury with subsequent fibrosis. These data could explain both acute kidney injury in COVID-19 patients and the development of chronic kidney disease in long COVID
- âŠ