10 research outputs found

    WNT activation by lithium abrogates TP53 mutation associated radiation resistance in medulloblastoma

    Get PDF
    TP53 mutations confer subgroup specific poor survival for children with medulloblastoma. We hypothesized that WNT activation which is associated with improved survival for such children abrogates TP53 related radioresistance and can be used to sensitize TP53 mutant tumors for radiation. We examined the subgroup-specific role of TP53 mutations in a cohort of 314 patients treated with radiation. TP53 wild-type or mutant human medulloblastoma cell-lines and normal neural stem cells were used to test radioresistance of TP53 mutations and the radiosensitizing effect of WNT activation on tumors and the developing brain. Children with WNT/TP53 mutant medulloblastoma had higher 5-year survival than those with SHH/TP53 mutant tumours (100% and 36.6% +/- 8.7%, respectively (p < 0.001)). Introduction of TP53 mutation into medulloblastoma cells induced radioresistance (survival fractions at 2Gy (SF2) of 89% +/- 2% vs. 57.4% +/- 1.8% (p < 0.01)). In contrast, beta-catenin mutation sensitized TP53 mutant cells to radiation (p < 0.05). Lithium, an activator of the WNT pathway, sensitized TP53 mutant medulloblastoma to radiation (SF2 of 43.5% +/- 1.5% in lithium treated cells vs. 56.6 +/- 3% (p < 0.01)) accompanied by increased number of.H2AX foci. Normal neural stem cells were protected from lithium induced radiation damage (SF2 of 33% +/- 8% for lithium treated cells vs. 27% +/- 3% for untreated controls (p = 0.05). Poor survival of patients with TP53 mutant medulloblastoma may be related to radiation resistance. Since constitutive activation of the WNT pathway by lithium sensitizes TP53 mutant medulloblastoma cells and protect normal neural stem cells from radiation, this oral drug may represent an attractive novel therapy for high-risk medulloblastomas.B.R.A.I.N Child Canada; Cancer Research UK; Brain Tumour Charity; Hungarian Brain Research Program [KTIA_13_NAP-A-V/3]; Janos Bolyai Scholarship of the Hungarian Academy of Sciences [TAMOP-4.2.2. A-11/1/KONV-2012-0025]; German Cancer Aid/Dr. Mildred Scheel Foundation for Cancer Research; Cure Childhood Cancer Foundation; St. Baldrick's Foundation; Southeastern Brain Tumor Foundation; Action Medical Research; [CZ.1.05/2.1.00/03.0101]; [CZ.1.07/2.3.00/20.0183

    TERT promoter mutations are highly recurrent in SHH subgroup medulloblastoma

    Get PDF
    Telomerase reverse transcriptase (TERT) promoter mutations were recently shown to drive telomerase activity in various cancer types, including medulloblastoma. However, the clinical and biological implications of TERT mutations in medulloblastoma have not been described. Hence, we sought to describe these mutations and their impact in a subgroup-specific manner. We analyzed the TERT promoter by direct sequencing and genotyping in 466 medulloblastomas. The mutational distributions were determined according to subgroup affiliation, demographics, and clinical, prognostic, and molecular features. Integrated genomics approaches were used to identify specific somatic copy number alterations in TERT promoter-mutated and wild-type tumors. Overall, TERT promoter mutations were identified in 21 % of medulloblastomas. Strikingly, the highest frequencies of TERT mutations were observed in SHH (83 %; 55/66) and WNT (31 %; 4/13) medulloblastomas derived from adult patients. Group 3 and Group 4 harbored this alteration in <5 % of cases and showed no association wit

    Characterization of Aeromonas and Vibrio species isolated from a drinking water reservoir

    No full text
    Aims: To study the phenotypic and chemotaxonomic (i.e. phospholipid and cellular fatty acid composition) characteristics of environmental Aeromonas spp. and Vibrio spp. isolated from a drinking water reservoir near Vladivostok City, and the application of some chemotaxonomic markers for discrimination of the two genera and species. Methods and Results: Presumptive Aeromonas species were dominant in surface water samples (up to 25% of the total number of bacteria recovered). These strains were consistent with respect to the cultural and biochemical properties used to define the species Aeromonas sobria (seven strains) and Aer. popoffii (three strains). Vibrio mimicus (two strains) and Vibrio metschnikovii (one strain) were identified according to phenotypic features and cellular fatty acid composition. Conclusions: Environmental Aer. sobria isolates were atypical in their ability to grow at 42°C, and were haemolytic, proteolytic and cytotoxic. Although it was present in a high proportion in the water samples, atypical Aer. sobria is not an indicator of polluted water. Significance and Impact of the Study: The incidence of Aeromonas in the drinking water reservoirs in the Far East of Russia is reported for the first time

    Reaction for the Synthesis of Benzimidazol-2-ones, Imidazo[5,4‑<i>b</i>]‑, and Imidazo[4,5‑<i>c</i>]pyridin-2-ones via the Rearrangement of Quinoxalin-2-ones and Their Aza Analogues When Exposed to Enamines

    No full text
    A synthetically useful protocol has been developed for the preparation of highly functionalized <i>N</i>-pyrrolylbenzimidazol-2-ones. The reaction of variously substituted 3-aroyl- and 3-alkanoylquinoxalin-2­(1<i>H</i>)-ones with commercially available enamines in acetic acid results in a rapid rearrangement and formation of <i>N</i>-pyrrolylbenzimidazol-2-ones in modest to excellent yields. The key step of the rearrangement involves the novel ring contraction of 3-aroyl- and 3-alkanoylquinoxalin-2­(1<i>H</i>)-ones with enamines. In this case, the atom of carbon which is displaced from the pyrazine ring of quinoxalin-2­(1<i>H</i>)-one becomes the fourth carbon atom of the newly formed pyrrole ring. The method is applicable for the aza analogues of quinoxalin-2­(1<i>H</i>)-ones

    Rearrangement of Quinoxalin-2-ones When Exposed to Enamines Generated in Situ from Ketones and Ammonium Acetate: Method for the Synthesis of 1‑(Pyrrolyl)benzimidazolones

    No full text
    The reaction of 3-benzoylquinoxalin-2­(1<i>H</i>)-ones with enamines (generated in situ from ammonium acetate and the corresponding methylaryl­(hetaryl)­ketones) proceeds smoothly to give the corresponding substituted 1-(pyrrolyl)­benzimidazolone derivatives in moderate yields through the novel rearrangement of 3-benzoylquinoxalin-2­(1<i>H</i>)-ones involving a dual cleavage of the C3N4 and C2-C3 bonds under mild conditions

    A Common Molecular Mechanism Underlies Two Phenotypically Distinct 17p13.1 Microdeletion Syndromes

    Get PDF
    DNA copy-number variations (CNVs) underlie many neuropsychiatric conditions, but they have been less studied in cancer. We report the association of a 17p13.1 CNV, childhood-onset developmental delay (DD), and cancer. Through a screen of over 4000 patients with diverse diagnoses, we identified eight probands harboring microdeletions at TP53 (17p13.1). We used a purpose-built high-resolution array with 93.75% breakpoint accuracy to fine map these microdeletions. Four patients were found to have a common phenotype including DD, hypotonia, and hand and foot abnormalities, constituting a unique syndrome. Notably, these patients were not affected with cancer. Moreover, none of the TP53-deletion patients affected with cancer (n = 4) had neurocognitive impairments. DD patients have larger deletions, which encompass but do not disrupt TP53, whereas cancer-affected patients harbor CNVs with at least one breakpoint within TP53. Most 17p13.1 deletions arise by Alu-mediated nonallelic homologous recombination. Furthermore, we identify a critical genomic region associated with DD and containing six underexpressed genes. We conclude that, although they overlap, 17p13.1 CNVs are associated with distinct phenotypes depending on the position of the breakpoint with respect to TP53. Further, detailed characterization of breakpoints revealed a common formation signature. Future studies should consider whether other loci in the genome also give rise to phenotypically distinct disorders by means of a common mechanism, resulting in a similar formation signature

    Subgroup-specific prognostic implications of TP53 mutation in medulloblastoma

    No full text
    Purpose Reports detailing the prognostic impact of TP53 mutations in medulloblastoma offer conflicting conclusions. We resolve this issue through the inclusion of molecular subgroup profiles. Patients and Methods We determined subgroup affiliation, TP53 mutation status, and clinical outcome in a discovery cohort of 397 medulloblastomas. We subsequently validated our results on an independent cohort of 156 medulloblastomas. Results TP53 mutations are enriched in wingless (WNT; 16%) and sonic hedgehog (SHH; 21%) medulloblastomas and are virtually absent in subgroups 3 and 4 tumors (P < .001). Patients with SHH/TP53 mutant tumors are almost exclusively between ages 5 and 18 years, dramatically different from the general SHH distribution (P < .001). Children with SHH/TP53 mutant tumors harbor 56% germline TP53 mutations, which are not observed in children with WNT/TP53 mutant tumors. Five-year overall survival (OS; ± SE) was 41% ± 9% and 81% ± 5% for patients with SHH medulloblastomas with and without TP53 mutations, respectively (P < .001). Furthermore, TP53 mutations accounted for 72% of deaths in children older than 5 years with SHH medulloblastomas. In contrast, 5-year OS rates were 90% ± 9% and 97% ± 3% for patients with WNT tumors with and without TP53 mutations (P = .21). Multivariate analysis revealed that TP53 status was the most important risk factor for SHH medulloblastoma. Survival rates in the validation cohort mimicked the discovery results, revealing that poor survival of TP53 mutations is restricted to patients with SHH medulloblastomas (P = .012) and not WNT tumors. Conclusion Subgroup-specific analysis reconciles prior conflicting publications and confirms that TP53 mutations are enriched among SHH medulloblastomas, in which they portend poor outcome and account for a large proportion of treatment failures in these patients
    corecore