53 research outputs found

    Tectonic history of the South Tannuol Fault Zone (Tuva region of the northern Central Asian Orogenic Belt, Russia) : constraints from multi-method geochronology

    Get PDF
    In this study, we present zircon U/Pb, plagioclase and K-feldspar Ar-40/Ar-39 and apatite fission track (AFT) data along the South Tannuol Fault Zone (STFZ). Integrating geochronology and multi-method thermochronology places constraints on the formation and subsequent reactivation of the STFZ. Cambrian (similar to 510 Ma) zircon U/Pb ages obtained for felsic volcanic rocks date the final stage of STFZ basement formation. Ordovician (similar to 460-450 Ma) zircon U/Pb ages were obtained for felsic rocks along the structure, dating their emplacement and marking post-formational local magmatic activity along the STFZ. Ar-40/Ar-39 stepwise heating plateau-ages (similar to 410-400 Ma, similar to 365 and similar to 340 Ma) reveal Early Devonian and Late Devonian-Mississippian intrusion and/or post-magmatic cooling episodes of mafic rocks in the basement. Permian (similar to 290 Ma) zircon U/Pb age of mafic rocks documents for the first time Permian magmatism in the study area creating prerequisites for revising the spread of Permian large igneous provinces of Central Asia. The AFT dating and Thermal history modeling based on the AFT data reveals two intracontinental tectonic reactivation episodes of the STFZ: (1) a period of Cretaceous-Eocene (similar to 100-40 Ma) reactivation and (2) the late Neogene (from similar to 10 Ma onwards) impulse after a period of tectonic stability during the Eocene-Miocene (similar to 40-10 Ma)

    Late-Paleozoic emplacement and Meso-Cenozoic reactivation of the southern Kazakhstan granitoid basement

    Get PDF
    International audienceThe Ili-Balkhash Basin in southeastern Kazakhstan is located at the junction of the actively deforming mountain ranges of western Junggar and the Tien Shan, and is therefore part of the southwestern Central Asian Orogenic Belt. The basement of the Ili-Balkhash area consists of an assemblage of mainly Precambrian microcontinental fragments, magmatic arcs and accretionary complexes. Eight magmatic basement samples (granitoids and tuffs) from the Ili-Balkhash area were dated with zircon U-Pb LA-ICP-MS and yield Carboniferous to late Permian (~ 350-260 Ma) crystallization ages. These ages are interpreted as reflecting the transition from subduction to (post-) collisional magmatism, related to the closure of the Junggar-Balkhash Ocean during the Carboniferous – early Permian and hence, to the final late Paleozoic accretion history of the ancestral Central Asian Orogenic Belt. Apatite fission track (AFT) dating of 14 basement samples (gneiss, granitoids and volcanic tuffs) mainly provides Cretaceous cooling ages. Thermal history modeling based on the AFT data reveals that several intracontinental tectonic reactivation episodes affected the studied basement during the late Mesozoic and Cenozoic. Late Mesozoic reactivation and associated basement exhumation is interpreted as distant effects of the Cimmerian collisions at the southern Eurasian margin and possibly of the Mongol-Okhotsk Orogeny in SE Siberia during the Jurassic – Cretaceous. Following tectonic stability during the Palaeogene, inherited basement structures were reactivated during the Neogene (constrained by Miocene AFT ages of ~ 17–10 Ma). This late Cenozoic reactivation is interpreted as the far-field response of the India-Eurasia collision and reflects the onset of modern mountain building and denudation in southeast Kazakhstan, which seems to be at least partially controlled by the inherited basement architecture

    Identical Functional Organization of Nonpolytene and Polytene Chromosomes in Drosophila melanogaster

    Get PDF
    Salivary gland polytene chromosomes demonstrate banding pattern, genetic meaning of which is an enigma for decades. Till now it is not known how to mark the band/interband borders on physical map of DNA and structures of polytene chromosomes are not characterized in molecular and genetic terms. It is not known either similar banding pattern exists in chromosomes of regular diploid mitotically dividing nonpolytene cells. Using the newly developed approach permitting to identify the interband material and localization data of interband-specific proteins from modENCODE and other genome-wide projects, we identify physical limits of bands and interbands in small cytological region 9F13-10B3 of the X chromosome in D. melanogaster, as well as characterize their general molecular features. Our results suggests that the polytene and interphase cell line chromosomes have practically the same patterns of bands and interbands reflecting, probably, the basic principle of interphase chromosome organization. Two types of bands have been described in chromosomes, early and late-replicating, which differ in many aspects of their protein and genetic content. As appeared, origin recognition complexes are located almost totally in the interbands of chromosomes

    Late Replication Domains in Polytene and Non-Polytene Cells of Drosophila melanogaster

    Get PDF
    In D. melanogaster polytene chromosomes, intercalary heterochromatin (IH) appears as large dense bands scattered in euchromatin and comprises clusters of repressed genes. IH displays distinctly low gene density, indicative of their particular regulation. Genes embedded in IH replicate late in the S phase and become underreplicated. We asked whether localization and organization of these late-replicating domains is conserved in a distinct cell type. Using published comprehensive genome-wide chromatin annotation datasets (modENCODE and others), we compared IH organization in salivary gland cells and in a Kc cell line. We first established the borders of 60 IH regions on a molecular map, these regions containing underreplicated material and encompassing ∼12% of Drosophila genome. We showed that in Kc cells repressed chromatin constituted 97% of the sequences that corresponded to IH bands. This chromatin is depleted for ORC-2 binding and largely replicates late. Differences in replication timing between the cell types analyzed are local and affect only sub-regions but never whole IH bands. As a rule such differentially replicating sub-regions display open chromatin organization, which apparently results from cell-type specific gene expression of underlying genes. We conclude that repressed chromatin organization of IH is generally conserved in polytene and non-polytene cells. Yet, IH domains do not function as transcription- and replication-regulatory units, because differences in transcription and replication between cell types are not domain-wide, rather they are restricted to small “islands” embedded in these domains. IH regions can thus be defined as a special class of domains with low gene density, which have narrow temporal expression patterns, and so displaying relatively conserved organization

    Similarity in replication timing between polytene and diploid cells is associated with the organization of the <i>Drosophila</i> genome

    No full text
    <div><p>Morphologically, polytene chromosomes of <i>Drosophila melanogaster</i> consist of compact “black” bands alternating with less compact “grey” bands and interbands. We developed a comprehensive approach that combines cytological mapping data of FlyBase-annotated genes and novel tools for predicting cytogenetic features of chromosomes on the basis of their protein composition and determined the genomic coordinates for all black bands of polytene chromosome 2R. By a PCNA immunostaining assay, we obtained the replication timetable for all the bands mapped. The results allowed us to compare replication timing between polytene chromosomes in salivary glands and chromosomes from cultured diploid cell lines and to observe a substantial similarity in the global replication patterns at the band resolution level. In both kinds of chromosomes, the intervals between black bands correspond to early replication initiation zones. Black bands are depleted of replication initiation events and are characterized by a gradient of replication timing; therefore, the time of replication completion correlates with the band length. The bands are characterized by low gene density, contain predominantly tissue-specific genes, and are represented by silent chromatin types in various tissues. The borders of black bands correspond well to the borders of topological domains as well as to the borders of the zones showing H3K27me3, SUUR, and LAMIN enrichment. In conclusion, the characteristic pattern of polytene chromosomes reflects partitioning of the <i>Drosophila</i> genome into two global types of domains with contrasting properties. This partitioning is conserved in different tissues and determines replication timing in <i>Drosophila</i>.</p></div
    corecore