71 research outputs found

    Subcritical water extraction of bioactive compounds from dry loquat (Eriobotrya japonica) leaves and characterization of triterpenes in the extracts

    Get PDF
    Medicinal properties of loquat leaf extracts (LLEs) are associated with their constituents of phenolic compounds and triterpenes. In this study, the efficacy of subcritical water extraction (SWE) technique was assessed by comparing with conventional solid-liquid extraction (CE) and Soxhlet extraction (SE). Results showed that the highest yields of total polyphenols were 82.7 ± 1.5 mgGAE/g leaf weight (LW), total flavonoids (54.1 ± 4.1 mgQE/g LW) and total triterpenoids (37.5 ± 3.2 mgUAE/g LW) were obtained by SWE compared to total polyphenols (61.8 ± 3.3 mgGAE/g LW), total flavonoids (43.2 ± 0.6 mgQE/g LW) and total triterpenoids (28.7 ± 2.3 mgUAE/g LW) extracted by SE and total polyphenols (50.3 ± 1.8 mgGAE/g LW), total flavonoids (40.4 ± 2.1 mgQE/g LW) and total triterpenoids (22.9 ± 3.2 mgUAE/g LW) obtained by CE. The extraction efficiency of triterpenes using SWE was about 1.7 times higher than those obtained using traditional extraction methods, and their main structural pattern of the cured extracts was comparable to the extracts obtained using traditional extraction methods.The infrared spectra obtained from the three extraction techniques appeared identical, but the variation in the intensity of the peak of absorption was visible among the three extraction techniques. The similarity of the infrared spectral pattern (peak coincided peak by peak) implies that the triterpenes in the extract obtained by the three techniques were identical by LC/MS. The findings of this study have demonstrated that SWE can be employed as an alternative green extraction technology to get important phytochemicals from plant sources.Keywords: Chinese loquat leaf, Eriobotrya japonica, subcritical water extraction, triterpen

    A New Approach to Synthesize of 4-Phenacylideneflavene Derivatives and to Evaluate Their Cytotoxic Effects on HepG2 Cell Line

    Get PDF
    In this study, a convenient approach and green procedure for the synthesis of 4-phenacylideneflavenes has been developed from the reaction between 2,4-dihydroxybenzaldehyde and substituted acetophenones using boric acid as a catalyst in polyethylene glycol 400. Seven 4-phenacylideneflavenes were synthetized and their structures were confirmed by NMR and mass spectral analyses. Meanwhile, their possible mechanism of formation was also discussed. These products were found to have potential cytotoxic effect on HepG2 cell line with IC50 values from 12.5 to 50 ”M

    Enhanced Electrokinetic Remediation of Cadmium (Cd)-Contaminated Soil with Interval Power Breaking

    Get PDF
    This study compared electrokinetic (EK) remediation with and without interval power breaking in the removal of total and plant available cadmium (Cd) in the soil. Two laboratory experiments, i.e. EK remediation with interval power breaking (24-12 h power-on-off cycles) and conventional EK remediation (continuous power supply), with the same accumulated time (192 h) of power supply, were conducted to remove soil Cd. After the EK remediation with interval power breaking, the total Cd removal efficiency in the soil rose to 38%, in comparison to 28% after the conventional EK remediation. As for the plant available Cd, the removal efficiency was enhanced from 52 to 63%. Additionally, the electric current during the EK remediation and electric conductivity after the EK remediation were higher in the soil treated by interval power breaking, which indicated an enhanced desorption and/or migration of charged species. It further meant that the higher removal efficiency of soil Cd by interval power breaking could be related to the enhanced desorption and/or migration of Cd species. This study indicated that both conventional EK remediation and EK remediation with interval power breaking were effective methods to remove soil Cd but EK remediation with interval power breaking was more efficient.Peer reviewe

    In situ electrokinetic (EK) remediation of the total and plant available cadmium (Cd) in paddy agricultural soil using low voltage gradients at pilot and full scales

    Get PDF
    Electrokinetic (EK) remediation has been widely studied at laboratory scales. However, field-scale research is far less. In this study, a 14-day EK remediation was carried out, in a field pilot (4 m2) test and a full-scale (200 m2) application for the first time, in a cadmium (Cd) contaminated paddy agricultural field near a mining area. A low voltage of 20 V was applied at both scales; voltage gradient was 20 V m & minus;1 and 4 V m & minus;1 at the pilot and full scales, respectively. Samples were taken from near the anode and cathode, and in the middle of the electric field, in the soil layers 0-10 cm, 10-20 cm, and 40-50 cm. After the EK remediation, a significant portion of the total Cd was removed in all the layers at the pilot scale, by 87%, 72%, and 54% from the top down, but only in the 0-10 cm layer at the full scale by 74%. As for the plant available (exchangeable and soluble) Cd, significant removal (64%) was only observed in the 0-10 cm layer at the pilot scale. The percentage reduction of the electrical conductivity and removal efficiency of the total Cd was higher near the anode than the cathode. The soil pH was elevated near the cathode but stayed below pH 6 due to the sufficient supply of lactic acid. After the EK remediation, the concentration of the total Cd dropped below the hazard threshold, i.e. 0.4 mg (kg dry wt soil)& minus;1 for agricultural paddy fields in China. A total energy of 2 kW & middot;h and 0.6 kW & middot;h was consumed at the pilot and full scales, respec-tively. This study showed a successful in situ EK remediation of Cd contaminated paddy agricultural soil, espe-cially in the surface layer, with low voltage and energy demand. (c) 2021 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).Peer reviewe

    Long-Lived Charge Separation Following Pump-Energy Dependent Ultrafast Charge Transfer in Graphene/WS2_2 Heterostructures

    Get PDF
    Van der Waals heterostructures consisting of graphene and transition metal dichalcogenides (TMDCs) have recently shown great promise for high-performance optoelectronic applications. However, an in-depth understanding of the critical processes for device operation, namely interfacial charge transfer (CT) and recombination, has so far remained elusive. Here, we investigate these processes in graphene-WS2_2 heterostructures, by complementarily probing the ultrafast terahertz photoconductivity in graphene and the transient absorption dynamics in WS2_2 following photoexcitation. We find that CT across graphene-WS2_2 interfaces occurs via photo-thermionic emission for sub-A-exciton excitation, and direct hole transfer from WS2_2 to the valence band of graphene for above-A-exciton excitation. Remarkably, we observe that separated charges in the heterostructure following CT live extremely long: beyond 1 ns, in contrast to ~1 ps charge separation reported in previous studies. This leads to efficient photogating of graphene. These findings provide relevant insights to optimize further the performance of optoelectronic devices, in particular photodetection

    Long-lived charge separation following pump-wavelength-dependent ultrafast charge transfer in graphene/WS2 heterostructures

    Get PDF
    Van der Waals heterostructures consisting of graphene and transition metal dichalcogenides have shown great promise for optoelectronic applications. However, an in-depth understanding of the critical processes for device operation, namely, interfacial charge transfer (CT) and recombination, has so far remained elusive. Here, we investigate these processes in graphene-WS2 heterostructures by complementarily probing the ultrafast terahertz photoconductivity in graphene and the transient absorption dynamics in WS2 following photoexcitation. We observe that separated charges in the heterostructure following CT live extremely long: beyond 1 ns, in contrast to ~1 ps charge separation reported in previous studies. This leads to efficient photogating of graphene. Furthermore, for the CT process across graphene-WS2 interfaces, we find that it occurs via photo- thermionic emission for sub-A-exciton excitations and direct hole transfer from WS2 to the valence band of graphene for above-A-exciton excitations. These findings provide insights to further optimize the perform ance of optoelectronic devices, in particular photodetection

    Zearalenone Promotes Cell Proliferation or Causes Cell Death?

    Get PDF
    Citation: Zheng, W.; Wang, B.; Li, X.; Wang, T.; Zou, H.; Gu, J.; Yuan, Y.; Liu, X.; Bai, J.; Bian, J.; Liu, Z. Zearalenone Promotes Cell Proliferation or Causes Cell Death? Toxins 2018, 10, 184.Zearalenone (ZEA), one of the mycotoxins, exerts different mechanisms of toxicity in different cell types at different doses. It can not only stimulate cell proliferation but also inhibit cell viability, induce cell apoptosis, and cause cell death. Thus, the objective of this review is to summarize the available mechanisms and current evidence of what is known about the cell proliferation or cell death induced by ZEA. An increasing number of studies have suggested that ZEA promoted cell proliferation attributing to its estrogen-like effects and carcinogenic properties. What’s more, many studies have indicated that ZEA caused cell death via affecting the distribution of the cell cycle, stimulating oxidative stress and inducing apoptosis. In addition, several studies have revealed that autophagy and some antioxidants can reverse the damage or cell death induced by ZEA. This review thoroughly summarized the metabolic process of ZEA and the molecular mechanisms of ZEA stimulating cell proliferation and cell death. It concluded that a low dose of ZEA can exert estrogen-like effects and carcinogenic properties, which can stimulate the proliferation of cells. While, in addition, a high dose of ZEA can cause cell death through inducing cell cycle arrest, oxidative stress, DNA damage, mitochondrial damage, and apoptosis

    Zinc-doping strategy on P2-type Mn-based layered oxide cathode for high-performance potassium-ion batteries

    Get PDF
    Mn-based layered oxide is extensively investigated as a promising cathode material for potassium-ion batteries due to its high theoretical capacity and natural abundance of manganese. However, the Jahn–Teller distortion caused by high-spin Mn3+(t2g3eg1) destabilizes the host structure and reduces the cycling stability. Here, K0.02Na0.55Mn0.70Ni0.25Zn0.05O2 (denoted as KNMNO-Z) is reported to inhibit the Jahn–Teller effect and reduce the irreversible phase transition. Through the implementation of a Zn-doping strategy, higher Mn valence is achieved in the KNMNO-Z electrode, resulting in a reduction of Mn3+ amount and subsequently leading to an improvement in cyclic stability. Specifically, after 1000 cycles, a high retention rate of 97% is observed. Density functional theory calculations reveals that low-valence Zn2+ ions substituting the transition metal position of Mn regulated the electronic structure around the Mn-O bonding, thereby alleviating the anisotropic coupling between oxidized O2− and Mn4+ and improving the structural stability. K0.02Na0.55Mn0.70Ni0.25Zn0.05O2 provided an initial discharge capacity of 57 mAh g−1 at 100 mA g−1 and a decay rate of only 0.003% per cycle, indicating that the Zn-doped strategy is effective for developing high-performance Mn-based layered oxide cathode materials in PIBs

    Dynamic reversible evolution of solid electrolyte interface in nonflammable triethyl phosphate electrolyte enabling safe and stable potassium-ion batteries

    Get PDF
    Potassium-ion batteries (PIBs) are a favorable alternative to lithium-ion batteries (LIBs) for the large-scale electrochemical storage devices because of the high natural abundance of potassium resources. However, conventional PIB electrodes usually exhibit low actual capacities and poor cyclic stability due to the large radius of potassium ions (1.39 Å). In addition, the high reactivity of potassium metal raises serious safety concerns. These characteristics seriously inhibit the practical use of PIB electrodes. Here, zinc phosphide composites are rationally designed as PIB anodes for operation in a nonflammable triethyl phosphate (TEP) electrolyte to solve the above-mentioned issues. The optimized zinc phosphide composite with 20 wt% zinc phosphate presents a high specific capacity (571.1 mA h g−1 at 0.1 A g−1) and excellent cycling performance (484.9 mA h g−1 with the capacity retention of 94.5% after 1000 cycles at 0.5 A g−1) in the KFSI-TEP electrolyte. XPS depth profile analysis shows that the improved cycling stability of the composite is closely related to the reversible dynamic evolutions and conversions of the sulfur-containing species in the solid electrolyte interphase (SEI) during the charge/discharge process. This dynamic reversible SEI concept may provide a new strategy for the design of superior electrodes for PIBs
    • 

    corecore