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Abstract: In this study, a convenient approach and green procedure for the synthesis of
4-phenacylideneflavenes has been developed from the reaction between 2,4-dihydroxybenzaldehyde
and substituted acetophenones using boric acid as a catalyst in polyethylene glycol 400. Seven
4-phenacylideneflavenes were synthetized and their structures were confirmed by NMR and
mass spectral analyses. Meanwhile, their possible mechanism of formation was also discussed.
These products were found to have potential cytotoxic effect on HepG2 cell line with IC50 values
from 12.5 to 50 µM.

Keywords: substituted acetophenones; 2,4-dihydroxybenzaldehyde; 4-phenacylideneflavenes;
cytotoxic effect; HepG2 cell line

1. Introduction

Chromene moieties are widely found in flavonoid derivatives. Their derivatives have become of
much interest due to a variety of biological activities such as anticancer, antimicrobial, anti-inflammatory,
and anti-HIV activities [1–4]. 4-Phenacylideneflavene derivatives are one type of chromene moiety
derivatives. However, the methods for the synthesis of phenacylideneflavene derivatives were
limited to only a few until now. Bhattacharjee and co-author recently reported one-pot synthesis
of 4-phenacylideneflavene derivatives with a simple reaction procedure, high bond-forming efficiency,
good yields, and environmentally benign reaction conditions using bromodimethylsulfonium bromide
as catalyst in [5]. Sashidhara et al. also reported one-pot synthesis of 4-phenacylideneflavene
derivatives through the reaction of salicylaldehydes and acetophenones using I2 as catalyst under
reflux conditions [6]. Other methods available for the synthesis of phenacylideneflavene derivatives
were as follows: Fichtner et al. reported to obtain 4-phenacylideneflavene derivatives from the reaction
of flavylium salt with 1-phenyl-1-(trimethylsiloxy)ethene in the presence of HBF4·OEt2 or TfOH,
Vanallan et al. and Hill used multi-step condensation reaction of salicylaldehyde and acetophenone
to prepare 4-phenacylideneflavene derivatives in hot HCl or AcOH [7–9]. Although some of these
methods are quite useful, there is still further need to develop the simple, efficient, inexpensive, and
environment-friendly procedures for the synthesis of 4-phenacylideneflavene.

With an increasing ecological pressure, new green synthetic strategies are of continuously growing
interest to synthetize valuable organic compounds due to their environment-friendliness, but this
depends on the discovery and usage of mild, low-cost, and high-performance catalysts. Boric acid is a
commercially available, environmentally benign, and inexpensive catalyst. Boric acid is a weak solid

Molecules 2017, 22, 1296; doi:10.3390/molecules22081296 www.mdpi.com/journal/molecules

http://www.mdpi.com/journal/molecules
http://www.mdpi.com
https://orcid.org/0000-0002-0261-3711
http://dx.doi.org/10.3390/molecules22081296
http://www.mdpi.com/journal/molecules


Molecules 2017, 22, 1296 2 of 7

acid and slightly soluble in water. It forms tetrahydroxyborate in water and serves as a Lewis acid
to play catalytic role in various reactions, such as aza-Michael reaction, Biginelli reaction, Mannich
reaction, and transamidation of carboxamides [10–14].

Recently, in the course of our synthetizing 2′,4′-dihydroxychalcone derivatives, our research group
accidentally discovered a new way to synthesize 4-phenacylideneflavene derivatives. To the best of our
knowledge, no reports for the use of boric acid for condensation of 2,4-dihydroxybenzaldehyde (1) and
substituted acetophenones (2a–2g) to form 4-phenacylideneflavenes were reported. Herein, we report
a one-pot procedure for the green synthesis of 4-phenacylideneflavenes (4a–4g) by the condensation
of 2,4-dihydroxybenzaldehyde with various substituted acetophenones using boric acid as a green
catalyst in polyethylene glycol 400 (Scheme 1). Meanwhile, the products (4a–4g) were also subjected to
cytotoxic tests on liver cancer cell line (HepG2).
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2. Results and Discussion

2.1. Chemistry

The desired seven 4-phenacylideneflavene derivatives (4a–4g) were prepared using a
straightforward one step reaction, as presented in Scheme 1. For the present study, the mixtures
of 2,4-dihydroxybenzaldehyde (1, 1 mmol) and various substituted acetophenones (2a–2g, 1 mmol)
were stirred in the presence of 0.5 mmol of boric acid in PEG-400 (5 mL) for 6 h at 130 ◦C.
Seven 4-phenacylideneflavene products 4a–4g were isolated by chromatographic purification.
The yields of products 4a–4g ranging from 3.06% to 25.28% were determined by HPLC analysis.
The yields of products were maybe affected by the molar ratios between 2,4-dihydroxybenzaldehyde
and acetophenones and solvent conditions. Taking the product 4e as example, when the ratio
of 2,4-dihydroxybenzaldehyde and 4-methylacetophenone was 1:2, the yield of 4e had great
improvement—up to 58.14%—whereas when the reaction was taken in methanol, no product of
4e was found. On the other hand, the different substituent groups and substituent positions also
affected the yields of products. The results indicated that the conversion to acylideneflavenes preferred
electron-rich substituents (R: OH, OMe, etc.) on the aromatic ring than electron-neutral one (R: H).
However, electron withdraw groups (R: CN, NO2) did not give any desired products under this
condition (data not shown). The low yield of 4b was probably due to the formation of intramolecular
hydrogen bond between 2-OH and acetophenone, which inhibited the Aldol reaction and Michael
addition afterwards. The structures of the synthesized compounds were characterized by 1H-NMR,
13C-NMR, and ESI mass spectra. The structures of compounds 4b–4d were finally determined on the
base of the 2D-NMR (1H-1H COSY, HSQC, HMBC, Supplementary materials), whereas the structures
of 4a, 4e–4g were determined on the base of the 1H-NMR and 13C-NMR and th structure of 4d.
1H-NMR, 13C-NMR and mass spectrometric data of synthesized compounds are summarized in
Materials and Methods.

A plausible mechanism for the formation of products 4a–4g was derived and shown in Scheme 2
on the basis of the reported literature [6]. The initial step was Aldol reaction catalyzed by boric acid
between 2,4-dihydroxybenzaldehyde (1) and substituted acetophenones (2a–2g) and firstly led to
the products of 2′,4′-dihydroxychalcones (3a–3g). The mechanism in path 1 involved in a Michael
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addition between substituted acetophenone (2a–2g) and 2′,4′-dihydroxychalcones (3a–3g) to offer
the products 5a–5g. The products 5a–5g further underwent intramolecular cyclization, followed by
dehydration to form adducts (6a–6g) and then were oxidized to form the product 4a–4g. The other
plausible mechanism in path 2 involved in intramolecular cyclization of 2′,4′-dihydroxychalcones
(3a–3g) to form their hemiacetal species 5a′–5g′, which were then converted to more reactive flavylium
ions (6a′–6g′). The flavylium ions (6a′–6g′) further reacted with substituted acetophenone (2a–2g) to
form adducts (6a–6g). Finally, adducts were oxidized to form the products 4a–4g, probably through
a disproportionation mechanism suggested by VanAllen [8], which also accounted for the low yield
of 4-phenacylideneflavene.
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2.2. Cytotoxic Effects on HepG2 Cell Line

In vitro cytotoxicities of seven 4-phenacylideneflavene derivatives (4a–4g) were preliminarily
evaluated against the selected cancer cell line (HepG2). The results of anticancer activity are expressed
as IC50 values and are shown in Table 1. As presented in Table 1, among the seven compounds,
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compound 4e showed the greatest cytotoxic activity against HepG2 cell. Substitution at the 4 position
with methyl group showed significant activity against HepG2, while substitutions with the hydroxyl,
methoxyl, and chlorine groups caused substantial decrease in activities, suggesting that the substitution
with different groups will cause substantial difference in activities. Thus, more research is worth to
carrying out to figure out what group leads to more potential cytotoxicity against HepG2 cell.

Table 1. Inhibitory effects of the products against HepG2 cell line

Products R HepG2 (IC50 µM)

4a H 20–50
4b 2-OH 20–50
4c 3-OH >50
4d 4-OH >50
4e 4-CH3 ≈12.5 a

4f 4-OCH3 20–50
4g 4-Cl >50

a Values are means ± SD (n = 3).

3. Materials and Methods

3.1. General Information

Analytical HPLC was carried out on a Waters 1525 system (Waters, Milford, MA, USA) equipped
with a 2487 dual-wavelength detector and the Empower 2 Pro software (Waters, Milford, MA, USA).
Alltima C18 column (250× 4.6 mm, 5 µm, Delta Technical Products Co., Des Plaines, IL, USA) was used for
analytical HPLC. 1H-NMR, 13C-NMR, HSQC, and HMBC data were acquired on a Bruker 400 DRX NMR
spectrometer (Bruker, Colorado Springs, CO, USA). Molecular weights of compounds were analyzed
on Waters Maldi Syapt Q-Tof mass spectrometer (Waters, Milford, MA, USA). Spectrophotometric
measurements for the tyrosinase inhibition assay were taken on a UV-5300PC Spectro-photometer
(Metash Instrument Co., Ltd., Shanghai, China). 2,4-Dihydroxybenzaldehyde (1), acetophenone
(2a), 2-hydroxyacetophenone (2b), 3-hydroxyacetophenone (2c), 4-hydroxyacetophenone (2d),
4-methylacetophenone (2e), 4-methoxyacetophenone (2f), and 4-chloroacetophenone (2g) were
purchased from Shanghai Darui Company (Shanghai, China). Polyethylene glycol 400 (PEG 400),
ethanol (EtOH), methanol (MeOH), boric acid, and dichloromethane (CH2Cl2) were purchased
from Sinopharm Chemical Reagent Co., Ltd. (Suzhou, China). Silica gel (200–300 mesh) for
column chromatography and TLC plates (HSGF254) were purchased from Yantai Jiangyou Silicone
Development Co. (Yantai, China). Dichloromethane (CH2Cl2), dimethyl sulfoxide (DMSO), 95%
ethanol (EtOH), methanol (MeOH), sodium dihydrogen orthophosphate (NaH2PO4·2H2O), formic
acid, and anhydrous di-sodium hydrogen phosphate (Na2HPO4) were purchased from Sinopharm
Chemical Reagent Co., Ltd. (Suzhou, China). HPLC grade solvents were purchased from J&K
Scientific Ltd. (Beijing, China).

3.2. General Procedure for the Synthesis of Compounds 4a–4g

The mixture of 2,4-dihydroxybenzaldehyde (1, 1 mmol), various substituted acetophenone (2a–2g,
1 mmol), and boric acid (0.5 mmol) were dissolved in PEG-400 and then were stirred to react for 6 h
at 130 ◦C. After the completion of the reaction, the reaction mixture was extracted with ethyl acetate
three times. The collected organic layers were combined and concentrated in vacuum, and the residue
was subjected to column chromatography on silica gel using CH2Cl2 (4a, 4e–4g) and CH2Cl2-MeOH
(30:1, 4b–4d) as eluent to generate the pure product.

2-(7-Hydroxy-2-phenyl-chromen-4-ylidene)-1-phenyl-ethanone (4a): Yellow power; m.p. 260 ◦C; Yield
4.79%; ESI-MS m/z 339.1 [M − H]−; 1H-NMR (400 MHz, DMSO-d6) δ ppm: 10.58 (1H, s, OH-4′ ′), 8.88
(1H, s, H-10), 8.24 (1H, d, J = 9.6 Hz, H-6′ ′), 8.10 (2H, d, J = 7.6 Hz, H-2, 6), 7.95 (2H, d, J = 7.2 Hz, H-2′,
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6′), 7.58 (2H, d, J = Hz, H-3′, 5′), 7.58 (1H, s, H-8), 7.56 (1H, m, H-4), 7.53 (2H, d, J = 7.6 Hz, H-3, 5),
7.19 (1H, s, H-4′), 6.90 (2H, overlapped, H-3′ ′, 5′ ′); 13C-NMR (100 MHz, DMSO-d6) δ ppm: 188.5 (C=O,
C-7), 161.3 (C, C-4′ ′), 155.1 (C, C-11), 153.9 (C, C-2′ ′), 142.1 (C, C-1′ ′), 140.7 (C, C-1′), 132.0 (C, C-1),
131.5 (CH, C-4), 130.7 (CH, C-4′), 129.1 (CH, C-2, 6), 128.37 (CH, C-2′, 6′), 127.6 (CH, C-3, 5), 125.6 (CH,
C-6′ ′), 125.4 (CH, C-3′, 5′), 114.8 (CH, C-10), 111.5 (C, C-9), 103.0 (CH, C-5′ ′), 101.8 (CH, C-3′ ′), 101.0
(CH, C-8).

2-[7-Hydroxy-2-(2-hydroxy-phenyl)-chromen-4-ylidene]-1-(2-hydroxy-phenyl)-ethanone (4b): Red power;
m.p. 249 ◦C; Yield 6.46%; ESI-MS m/z 371.1 [M − H]−; 1H-NMR (400 MHz, DMSO-d6) δ ppm: 13.82
(1H, s, OH-2), 10.65 (2H, s, OH-2′, 4′ ′), 9.20 (1H, s, H-10), 8.32 (1H, d, J = 9.2 Hz, H-6′ ′), 8.26 (1H, d,
J = 8.0 Hz, H-6), 7.84 (1H, d, J = 7.6 Hz, H-6′), 7.46 (1H, t, J = 7.6 Hz, H-4), 7.35 (1H, t, J = 8.0 Hz, H-4′),
7.21 (1H, s, H-8), 7.02 (1H, d, J = 8.8 Hz, H-3′), 6.98 (1H, d, J = 7.6 Hz, H-3), 6.93 (1H, overlapped,
H-5′), 6.92 (1H, overlapped, H-5), 6.90 (1H, overlapped, H-3′ ′), 6.88 (1H, overlapped, H-5′ ′); 13C-NMR
(100 MHz, DMSO-d6) δ ppm: 192.3 (C=O, C-7), 162.3 (C, C-2), 161.6 (C, C-4′ ′), 156.2 (C, C-2′), 154.4 (C,
C-11), 154.3 (C, C-2′ ′), 145.0 (C, C-1′ ′), 134.6 (CH, C-4), 131.7 (CH, C-4′), 129.4 (CH, C-6), 128.3 (CH,
C-6′), 126.0 (CH, C-6′ ′), 121.8 (C, C-1), 119.3 (CH, C-3), 118.6 (C, C-1′), 118.4 (CH, C-5′), 117.7 (CH, C-5),
116.8 (CH, C-3′), 115.0 (CH, C-5′ ′), 111.6 (C, C-9), 106.6 (CH, C-10), 102.8 (CH, C-3′ ′), 98.6 (CH, C-8).

2-[7-Hydroxy-2-(3-hydroxy-phenyl)-chromen-4-ylidene]-1-(3-hydroxy-phenyl)-ethanone (4c): Red power; m.p.
310 ◦C; Yield 19.27%; ESI-MS m/z 371.1 [M − H]−; 1H-NMR (400 MHz, DMSO-d6) δ ppm: 10.56 (1H,
s, OH-4′ ′), 9.82 (1H, s, OH-3), 9.62 (1H, s, OH-3′), 8.79 (1H, s, H-10), 8.18 (1H, d, J = 9.2 Hz, H-6′ ′),
7.55 (1H, d, J = 8.0 Hz, H-6), 7.41 (1H, H-4), 7.38 (2H, overlapped, H-5′, 6′), 7.35 (1H, H-4′), 7.31 (1H, t,
J = 8.0 Hz, H-5), 7.10 (1H, s, H-8), 6.97 (1H, H-2), 6.95 (1H, H-2′), 6.88 (1H, dd, J = 8.8, 2.4 Hz, H-5′ ′),
6.85 (1H, d, J = 2.4 Hz, H-3′ ′); 13C-NMR (100 MHz, DMSO-d6) δ ppm: 188.5 (C=O, C-7), 161.2 (C, C-4′ ′),
157.8 (C, C-3′), 157.4 (C, C-3), 155.0 (C, C-11), 153.8 (C, C-2′ ′), 142.2 (C, C-1), 141.9 (C, C-1′ ′), 133.2 (C,
C-1′), 130.2 (CH, C-5′), 129.3 (CH, C-5), 125.5 (CH, C-6′ ′), 118.6 (CH, C-6), 118.4 (CH, C-2), 117.9 (CH,
C-2′), 116.2 (CH, C-6′), 114.8 (CH, C-5′ ′), 114.0 (CH, C-4), 111.9 (CH, C-4′), 111.5 (C, C-9), 102.9 (CH,
C-3′ ′), 101.7 (CH, C-10), 101.0 (CH, C-8).

2-[7-Hydroxy-2-(4-hydroxy-phenyl)-chromen-4-ylidene]-1-(4-hydroxy-phenyl)-ethanone (4d): Red power;
m.p. 197 ◦C; Yield 3.06%; ESI-MS m/z 371.2 [M − H]−; 1H-NMR (400 MHz, DMSO-d6) δ ppm: 10.15
(3H,br s, OH-4, 4′, 4′ ′), 8.74 (1H, s, H-10), 8.17 (1H, d, J = 8.8 Hz, H-6′ ′), 8.00 (2H, d, J = 8.8 Hz, H-2, 6),
7.79 (2H, d, J = 8.4 Hz, H-2′, 6′), 7.09 (1H, s, H-8), 6.96 (2H, d, J = 8.8 Hz, H-3′, 5′), 6.86 (2H, d, J = 8.8 Hz,
H-3, 5), 6.85 (2H, overlapped, H-3′ ′, 5′ ′); 13C-NMR (100 MHz, DMSO-d6) δ ppm: 187.2 (C=O, C-7),
160.9 (C, C-4′ ′), 160.7 (C, C-4), 159.9 (C, C-4′), 155.0 (C, C-11), 153.7 (C, C-2′ ′), 141.4 (C, C-1′ ′), 132.2 (C,
C-1), 129.9 (CH, C-2, 6), 127.2, 127.1 (CH, C-2′, 6′), 125.4 (CH, C-6′ ′), 122.7 (C, C-1′), 116.0, 115.8 (CH,
C-3′, 5′), 115.0, 114.8 (CH, C-3, 5), 111.7 (C, C-9), 103.1, 102.8 (CH, C-3′ ′, 5′ ′), 99.8 (CH, C-8, 10).

2-(7-Hydroxy-2-p-tolyl-chromen-4-ylidene)-1-p-tolyl-ethanone (4e): Yellow power; m.p. 258 ◦C; Yield
25.28%; ESI-MS m/z 367.2 [M − H]−; 1H-NMR (400 MHz, DMSO-d6) δ ppm: 10.52 (1H, s, OH-4′ ′),
8.84 (1H, s, H-10), 8.20 (1H, d, J = 8.8 Hz, H-6′ ′), 8.00 (2H, d, J = 8.0 Hz, H-2, 6), 7.82 (2H, d, J = 8.4 Hz,
H-2′, 6′), 7.37 (2H, d, J = 8.4 Hz, H-3′, 5′), 7.31 (2H, d, J = 8.0 Hz, H-3, 5), 7.15 (1H, s, H-8), 6.88 (1H,
dd, J = 8.0, 2.4 Hz, H-5′ ′), 6.87 (1H, d, J = 2.4 Hz, H-3′ ′); 13C-NMR (100 MHz, DMSO-d6) δ ppm: 188.7
(C=O, C-7), 161.2 (C, C-4′ ′), 155.0 (C, C-11), 153.8 (C, C-2′ ′), 141.9 (C, C-1′ ′), 141.6 (C, C-4), 140.7 (C,
C-4′), 138.1 (C, C-1), 129.7 (CH, C-2, 6), 129.2 (C, C-1′), 129.0 (CH, C-2′, 6′), 127.7 (CH, C-3, 5), 125.6
(CH, C-6′ ′), 125.3 (CH, C-3′, 5′), 114.7 (CH, C-10), 111.6 (C, C-9), 103.0 (CH, CH-5′ ′), 101.2 (CH, C-3′ ′),
100.6 (CH, C-8), 21.0 (CH3-4, 4′).

2-[7-Hydroxy-2-(4-methoxy-phenyl)-chromen-4-ylidene]-1-(4-methoxy-phenyl)-ethanone (4f): Yellow power;
m.p. 260 ◦C; Yield 19.37%; ESI-MS m/z 399.2 [M − H]−; 1H-NMR (400 MHz, DMSO-d6) δ ppm: 8.78
(1H, s, H-10), 8.20 (1H, d, J = 9.6 Hz, H-6′ ′), 8.09 (2H, d, J = 8.8 Hz, H-2, 6), 7.88 (2H, d, J = 8.4 Hz,
H-2′, 6′), 7.13 (2H, d, J = 8.8 Hz, H-3′, 5′), 7.121 (1H, s, H-8), 7.03 (2H, d, J = 8.8 Hz, H-3, 5), 6.87 (1H,
overlapped, H-3′ ′), 6.86 (1H, overlapped, H-5′ ′); 13C-NMR (100 MHz, DMSO-d6) δ ppm: 187.3 (C=O,
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C-7), 162.0 (C, C-4′ ′), 161.3 (C, C-4), 161.1 (C, C-4′), 154.9 (C, C-11), 153.8 (C, C-2′ ′), 141.7 (C, C-1′ ′),
133.6 (C, C-1), 129.8 (CH, C-2, 6), 127.2 (CH, C-2′, 6′), 125.5 (CH, C-6′ ′), 124.3 (C, C-1′), 114.6 (CH, C-3′,
5′), 114.6 (CH, C-10), 113.6 (CH, C-3, 5), 111.7 (C, C-9), 103.0 (CH, CH-5′ ′), 100.4 (CH, C-3′ ′), 100.2 (CH,
C-8), 55.5 (CH3O-4), 55.4 (CH3O-4′).

1-(4-Chloro-phenyl)-2-[2-(4-chloro-phenyl)-7-hydroxy-chromen-4-ylidene]-ethanone (4g): Yellow power; m.p.
298 ◦C; Yield 20.45%; ESI-MS m/z 407.1 [M − H]−; 1H-NMR (400 MHz, DMSO-d6) δ ppm: 8.79 (1H, s,
H-10), 8.16 (1H, d, J = 8.8 Hz, H-6′ ′), 8.08 (2H, d, J = 8.4 Hz, H-2, 6), 7.92 (2H, d, J = 8.4 Hz, H-2′, 6′),
7.60 (2H, d, J = 8.4 Hz, H-3′, 5′), 7.53 (2H, d, J = 8.4 Hz, H-3, 5), 7.12 (1H, s, H-8), 6.89 (1H, dd, J = 8.8,
2.0 Hz, H-5′ ′), 6.86 (1H, d, J = 2.4 Hz, H-3′ ′); 13C-NMR (100 MHz, DMSO-d6) δ ppm: 187.0 (C=O, C-7),
161.3 (C, C-4′ ′), 153.6 (C, C-11), 153.7 (C, C-2′ ′), 142.2 (C, C-1′ ′), 139.2 (C, C-1), 136.3 (C, C-4), 135.3 (C,
C-4′), 130.7 (C, C-1′), 129.2 (CH, C-2, 6), 128.2 (CH, C-2′, 6′), 127.0 (CH, C-3, 5), 125.3 (CH, C-6′ ′), 114.8
(CH, C-10), 111.3 (C, C-9), 102.9 (CH, CH-5′ ′), 102.1 (CH, C-3′ ′), 100.8 (CH, C-8).

3.3. HPLC Analysis of the Products

The yields of products were determined by HPLC analysis on the crude reaction mixture after
having made a calibration curve with pure compounds isolated by chromatography. The analytical
HPLC system consisted of a Shimadzu LC-20AT series pumping system, an SIL-20A automatic injector,
an SPD-M20A UV-visible detector, and Class-Vp chromatography data station software. All samples
were analyzed by HPLC using a reverse-phase GraceSmart column (4.6 µm, 2.1 × 250 mm, Ryss
Tech Ltd., Shanghai, China) at 30 ◦C with a flow rate of 1.0 mL/min. The mobile phases consisted
of solvent A (0.1% formic acid in water, v/v) and solvent B (methanol). The gradient elution was as
follows: initially, 20% B; 0–10 min, 50% B; 10–30 min, 80% B; 30–32 min, 100% B; 32–35 min, 100% B;
35–40 min, 20% B; 40–50 min, 20% B. Flow rate was set at 1.0 mL/min. The sample injection volume
was 10 µL. The UV detector was set at 369 nm.

3.4. Biological Evaluation

3.4.1. Cell Culture

HepG2 cell was cultured in Dulbecco’s Modified Eagle Medium (high glucose) and RPMI-1640,
respectively, with 10% fetal bovine serum under standard culture conditions. When the cells grew to
about 80% confluence, they were sub-cultured or treated with products.

3.4.2. Growth Inhibition Study

The proliferation of cells was assessed by using the 3-(4,5-dimethylthiazol-2-yl)-2,5-
diphenyltetrazolium bromide (MTT) assay. Cells were plated on 96-well microplates in 100 µL
(1× 104/well). After 12 h, the cells were treated with the medium (without FBS) containing compounds
(12.5, 25, and 50 µM) for 24 h. At the end of experiments, 10 µL of 5 µg/mL MTT was directly added
to each well. Cells were then incubated at 37 ◦C for 4 h. After removing medium, formazan was
solubilized by 100 µL of DMSO and measured at 560 nm. All experiments were repeated three times.

4. Conclusions

In conclusion, a simple one pot synthesis of 4-phenacylideneflavene derivatives from the reaction
between 2,4-dihydroxybenzaldehyde and substituted acetophenones had been developed in the
presence of boric acid as catalyst in PEG 400. The method provided an inexpensive, safe, simple, and
eco-friendly way to synthetize 4-phenacylideneflavene derivatives. On the other hand, the synthesized
4-phenacylideneflavene products were found to have potential inhibitory activities against HepG2
cell line. To the best of our knowledge, this is the first report for the use of boric acid for condensation
of 2,4-dihydroxybenzaldehyde and substituted acetophenones to form 4-phenacylideneflavenes and
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preliminarily evaluated their anticancer activities against HepG2 cell line, which will contribute to the
development of green strategy for synthesizing various biologically flavene products.

Supplementary Materials: The 1D- (1H- and 13C-NMR), 2D-NMR (1H-1H COSY, HSQC and HMBC), ESI-MS
spectra of compounds are available in the supplementary materials.
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