10 research outputs found

    Assessment of Salmonella enterica Biofilms and Expression Differences Among Serovars

    Get PDF
    Biofilms are communities of microorganisms associated by a matrix of extracellular polymers. In this state, microorganisms occupy an ecological niche distinct from their free-floating, planktonic counterparts. Also, biofilm bacteria become biologically unique as they form communities and lose motility. The acquisition of these physiological attributes enables the biofilm to persist through harsh environmental conditions, including antimicrobial induced stress and to resist sanitization efforts. Because of these features, biofilms can rapidly disseminate across numerous surfaces and as they establish, become challenging to remove. This is a particular issue for the food industry as processing plants offer favorable conditions for biofilm formation by providing complex surfaces composed of diverse materials that are frequently inoculated with pathogens and provide an abundance of nutrients and water. This thesis initiates investigations into the mechanisms behind biofilm formation in processing plants, and with such knowledge potentially result in novel treatments in the future. In particular, Salmonella enterica, one of the most prevalent foodborne pathogens worldwide, can produce biofilms that are difficult to remove. The thesis starts with a literature review detailing the mechanisms behind biofilm formation, evaluating the state of biofilms in food processing, and finishing with current and future mitigation strategies (Chapter 1). Next, this thesis includes four research chapters, with the first evaluating the ability of disinfectants to reduce Salmonella biofilms (Chapter 2); the second with a genome announcement about our genomic elucidation of four Salmonella strains isolated from poultry sources that are known to produce biofilms (Chapter 3); the third detailing our exploration of the pellicle forming properties of Salmonella with a focus on the lesser studied Kentucky serovar (Chapter 4); before ending with an evaluation of transcriptional dynamics of poultry isolates of different Salmonella serovars during biofilm formation (Chapter 5). Data presented herein will provide novel insight into Salmonella biofilm dynamics, mitigation, and genetics

    Applications of Microbiome Analyses in Alternative Poultry Broiler Production Systems

    Get PDF
    While most of the focus on poultry microbiome research has been directed toward conventional poultry production, there is increasing interest in characterizing microbial populations originating from alternative or non-conventional poultry production. This is in part due to the growing general popularity in locally produced foods and more specifically the attractiveness of free-range or pasture raised poultry. Most of the focus of microbiome characterization in pasture flock birds has been on live bird production, primarily on the gastrointestinal tract. Interest in environmental impacts on production responses and management strategies have been key factors for comparative microbiome studies. This has important ramifications since these birds are not only raised under different conditions, but the grower cycle can be longer and in some cases slower growing breeds used. The impact of different feed additives is also of interest with some microbiome-based studies having examined the effect of feeding these additives to birds grown under pasture flock conditions. In the future, microbiome research approaches offer unique opportunities to develop better live bird management strategies and design optimal feed additive approaches for pasture flock poultry production systems

    Developments in Rapid Detection Methods for the Detection of Foodborne Campylobacter in the United States

    Get PDF
    The accurate and rapid detection of Campylobacter spp. is critical for optimal surveillance throughout poultry processing in the United States. The further development of highly specific and sensitive assays to detect Campylobacter in poultry matrices has tremendous utility and potential for aiding the reduction of foodborne illness. The introduction and development of molecular methods such as polymerase chain reaction (PCR) have enhanced the diagnostic capabilities of the food industry to identify the presence of foodborne pathogens throughout poultry production. Further innovations in various methodologies, such as immune-based typing and detection as well as high throughput analyses, will provide important epidemiological data such as the identification of unique or region-specific Campylobacter. Comparable to traditional microbiology and enrichment techniques, molecular techniques/methods have the potential to have improved sensitivity and specificity, as well as speed of data acquisition. This review will focus on the development and application of rapid molecular methods for identifying and quantifying Campylobacter in U.S. poultry and the emergence of novel methods that are faster and more precise than traditional microbiological techniques

    The Potential Link between Thermal Resistance and Virulence in Salmonella: A Review

    Get PDF
    In some animals, the typical body temperature can be higher than humans, for example, 42°C in poultry and 40°C in rabbits which can be a potential thermal stress challenge for pathogens. Even in animals with lower body temperatures, when infection occurs, the immune system may increase body temperature to reduce the chance of survival for pathogens. However, some pathogens can still easily overcome higher body temperatures and/or rise in body temperatures through expression of stress response mechanisms. Salmonella is the causative agent of one of the most prevalent foodborne illnesses, salmonellosis, and can readily survive over a wide range of temperatures due to the efficient expression of the heat (thermal) stress response. Therefore, thermal resistance mechanisms can provide cross protection against other stresses including the non-specific host defenses found within the human body thus increasing pathogenic potential. Understanding the molecular mechanisms associated with thermal responses in Salmonella is crucial in designing and developing more effective or new treatments for reducing and eliminating infection caused by Salmonella that have survived heat stress. In this review, Salmonella thermal resistance is assessed followed by an overview of the thermal stress responses with a focus on gene regulation by sigma factors, heat shock proteins, along with the corresponding thermosensors and their association with virulence expression including a focus on a potential link between heat resistance and potential for infection

    Short Communication: Preliminary Differences Identified in Genes Responsible for Biofilm Formation in Poultry Isolates of Salmonella enterica Heidelberg, Enteritidis, and Kentucky

    No full text
    Salmonella enterica is one of the most prevalent foodborne pathogens. The large quantity of serovar types results in the colonization of a large spectrum of hosts, with different environmental conditions and hazards. The aim of this study was to evaluate the differences in gene expression (bcsA and csgD) of Salmonella enterica serovars Heidelberg, Kentucky, and Enteritidis during biofilm formation using quantitative reverse-transcriptase polymerase chain reaction (qRT-PCR). Overall, there appeared to be differences in expression between the different serovars with high variation between strains. These data are important as they demonstrate considerable variability in gene expression between serovars and strains of poultry isolates of Salmonella enterica

    The Reduction of Pathogen Load on Ross 708 Broilers when Using Different Sources of Commercial Peracetic Acid Sanitizers in a Pilot Processing Plant

    No full text
    Peracetic acid (PAA) in poultry processing is not necessarily the same from company to company. Anecdotal evidence suggests that PeraClean may be more stable compared to the competition; however, it is not known what impact potential differences in chemical stability may have. In order to evaluate the antimicrobial effects of PAA, one PAA (PeraClean, P) was qualitatively compared against two competitor products (Competitors 1 and 2, C1 and C2) at the University of Arkansas Pilot Processing Plant. A total of 150 Ross 708 broilers (42 d) were used in the current study. Briefly, prior to treatment, 10 birds were sampled post-evisceration (C). Then, one of four treatment groups per PAA were applied (A1, A2, B1, and B2). The birds were dipped in either 400 ppm or 600 ppm PAA (A or B), chilled in either 25 ppm or 45 ppm PAA (1 or 2), and then manually agitated in 400 mL of nBPW for 1 min. There were 10 birds per treatment group in total. The resulting rinsates were transported to the Center for Food Safety and assessed for total microbiological load with total aerobic plate counts (Trypticase Soy Agar; APC), coliforms, (Eosin Methylene Blue Media; EMB), Salmonella (Xylose Lysine Deoxycholate agar, XLD), and Campylobacter (modified Charcoal Cefoperazone Deoxycholate Agar, mCCDA). The microbiological plates were incubated as per manufacturer’s directions. Statistical analyses were calculated in JMP 14.0, with a significance level of p ≤ 0.05. Data indicate that all three sources of PAA are effective sanitizers for poultry processing applications compared within treatment. Qualitatively, there were differences in efficacy between the treatments. However, additional studies will be required to determine if those differences are quantitatively distinctive and if they are attributable to differences in product stability
    corecore