51 research outputs found

    Biomonitoring of deoxynivalenol and deoxynivalenol-3-glucoside in human volunteers : renal excretion profiles

    Get PDF
    Biomarkers for the determination of the dietary exposure to deoxynivalenol (DON) have been proposed in the past but so far no quantification of their use in humans has been carried out. Following a human intervention study with two mycotoxins, namely DON and deoxynivalenol-3-glucoside (DON3G), the renal excretion of these compounds, including their phase II metabolites, was analysed. The purpose was to develop biokinetic models that can be used to determine: (1) the preferred (set of) urinary biomarker(s), (2) the preferred urinary collection period, and (3) a method to estimate the dietary exposure to these mycotoxins. Twenty adult volunteers were restricted in consuming cereals and cereal-based foods for 4 days. At day 3, a single dose of 1 mu g/kg body weight of DON or DON3G was orally administered to 16 volunteers; 4 volunteers served as control. All individual urine discharges were collected during 24 h after administration. The metabolism and renal excretion could be described by a biokinetic model using three physiological compartments (gastrointestinal tract, liver, and kidneys). Kinetic analysis revealed a complete recovery of the renal excretion of total DON (mainly DON and its glucuronides) within 24 h after administration of DON or DON3G. The so-called 'reverse dosimetry' factor was used to determine the preferred (set of) biomarker(s) and to estimate the dietary intake of the parent compounds in the future. The fact that DON3G was absorbed and mainly excreted as DON and its glucuronides confirms that DON3G (as well as other modified forms) should be taken into account in the exposure and risk assessment of this group of mycotoxins

    Do background levels of the pesticide pirimiphosmethyl in plant-based aquafeeds affect food safety of farmed Atlantic salmon?

    Get PDF
    The substitution of fish oil and fishmeal with plant-based ingredients in commercial aquafeeds for Atlantic salmon, may introduce novel contaminants that have not previously been associated with farmed fish. The organophosphate pesticide pirimiphos-methyl (PM) is one of the novel contaminants that is most prevalent in commercial salmon feed. In this study, the feed-to-fillet transfer of dietary PM and its main metabolites was investigated in Atlantic salmon fillet. Based on the experimental determined PM and metabolite uptake, metabolisation, and elimination kinetics, a physiologically based toxicokinetic (PBTK) compartmental model was developed. Fish fed PM had a relatively low (~4%) PM retention and two main metabolites (2-DAMP and Desethyl-PM) were identified in liver, muscle, kidney and bile. The absence of more metabolised forms of 2-DAMP and Desethyl-PM in Atlantic salmon indicates different metabolism in cold-water fish compared to previous studies on ruminants. The model was used to simulate the long term (>1.5 years) feed-to-fillet transfer of PM + metabolite in Atlantic salmon under realistic farming conditions including seasonal fluctuations in feed intake, growth, and fat deposition in muscle tissue. The model predictions show that with the constant presence of the highest observed PM concentration in commercial salmon feed, fillet PM+ metabolite levels were approximately 5 nmol kg−1, with highest levels for the metabolite 2-DAMP. No EU maximum residue levels (MRL) for PM and its main metabolites exist in seafood to date, but the predicted levels were lower than the MRL for PM in swine of 32.7 nmol kg−1.publishedVersio

    An integrative risk assessment approach for persistent chemicals: A case study on dioxins, furans and dioxin-like PCBs in France

    Get PDF
    a b s t r a c t For persistent chemicals slowly eliminated from the body, the accumulated concentration (body burden), rather than the daily exposure, is considered the proper starting point for the risk assessment. This work introduces an integrative approach for persistent chemical risk assessment by means of a dynamic body burden approach. To reach this goal a Kinetic Dietary Exposure Model (KDEM) was extended with the long term time trend in the exposure (historic exposure) and the comparison of bioaccumulation with body burden references for toxicity. The usefulness of the model was illustrated on the dietary exposure to PolyChlorinatedDibenzo-p-Dioxins (PCDDs), PolyChlorinatedDibenzoFurans (PCDFs) and PolyChlorinated Biphenyls (PCBs) in France. Firstly the dietary exposure to these compounds was determined in 2009 and combined with its long term time trend. In order to take differences between the kinetics of PCDD/F and dl-PCBs into account, three groups of congeners were considered i.e. PCDD/Fs, PCB 126 and remaining dl-PCBs. The body burden was compared with reference body burdens corresponding to reproductive, hepatic and thyroid toxicity. In the case of thyroid toxicity this comparison indicated that in 2009 the probability of the body burden to exceed its reference ranged from 2.8% (95% CI: 1.5-4.9%) up to 3.9% (95% CI: 2.7-7.1%) (18-29 vs. 60-79 year olds). Notwithstanding the decreasing long-term time trend of the dietary dioxin exposure in France, this probability still is expected to be 1.5% (95% CI: 0.3-2.5%) in 2030 in 60-79 olds. In the case of reproductive toxicity the probability of the 2009 body burden to exceed its reference ranged from 3.1% (95% CI: 1.4-5.0%) (18-29 year olds) to 3.5% (95% CI: 2.2-5.2%) (30-44 year olds). In 2030 this probability is negligible in 18-29 year olds, however small though significant in 30-44 year olds (0.7%, 95% CI: 0-1.6%). In the case of hepatic toxicity the probability in 2009 even in 60-79 year olds already was negligible. In conclusion this approach indicates that in France dioxin levels in food form a declining, though still present, future health risk with respect to thyroid and reproductive toxicity

    Breeding for grapevine downy mildew resistance via gene editing

    Get PDF
    Downy mildew (DM) caused by the oomycete Plasmopara viticola ranks in the top diseases affecting grapevine (Vitis vinifera L.) cultivation and its control requires every year a large use of fungicides. The Farm to Fork strategy newly promoted by the EU aims to accelerate the transition to a sustainable food system and has set very ambitious targets including the reduction by 50% of the use and risk of pesticides by 2030. The introduction of disease-tolerant grapevine varieties or clones clearly represents a step forward to reach this goal. The recent advent of new breeding tools such as genome editing and cis-genesis offers a great opportunity to obtain resistant plants with higher precision and speed than by conventional breeding, either by knocking down susceptibility genes or by introducing known resistance-genes in commercial cultivars. Based on reports in other crops, the family of Downy Mildew Resistant 6 (DMR6) and DMR6-like oxygenases (DLOs) are candidate susceptibility genes for the control of DM resistance in V. vinifera. Deep-sequencing the putative susceptibility genes in 190 genetically diverse grapevine genotypes identified several Single Nucleotide Polymorphisms then screened for their impact on protein structure/function and association with DM resistant genotypes. Gene expression and gene network analysis suggested that grapevine DMR6 and DLO genes have distinct functions, and that VviDMR6-1 is co-regulated with several Pathogenesis-related genes. Based on this evidence, we generated a large collection of DMR6-1 and DMR6-2 single and double knock-out mutants in multiple grapevine cultivars and evaluated their resistance to DM. Phenotypic resistance data upon artificial infection are being collected and will be presented here. In parallel, we also developed a new DNA-free gene editing methodology and obtained non-transgenic and non-chimeric edited grapevine plants regenerated from a single cell

    Grapevine DMR6-1 Is a candidate gene for susceptibility to Downy mildew

    Get PDF
    Grapevine (Vitis vinifera) is a valuable crop in Europe for both economical and cultural reasons, but highly susceptible to Downy mildew (DM). The generation of resistant vines is of critical importance for a sustainable viticulture and can be achieved either by introgression of resistance genes in susceptible varieties or by mutation of Susceptibility (S) genes, e.g., by gene editing. This second approach offers several advantages: it maintains the genetic identity of cultivars otherwise disrupted by crossing and generally results in a broad-spectrum and durable resistance, but it is hindered by the poor knowledge about S genes in grapevines. Candidate S genes are Downy mildew Resistance 6 (DMR6) and DMR6-Like Oxygenases (DLOs), whose mutations confer resistance to DM in Arabidopsis. In this work, we show that grapevine VviDMR6-1 complements the Arabidopsis dmr6-1 resistant mutant. We studied the expression of grapevine VviDMR6 and VviDLO genes in different organs and in response to the DM causative agent Plasmopara viticola. Through an automated evaluation of causal relationships among genes, we show that VviDMR6-1, VviDMR6-2, and VviDLO1 group into different co-regulatory networks, suggesting distinct functions, and that mostly VviDMR6-1 is connected with pathogenesis-responsive genes. Therefore, VviDMR6-1 represents a good candidate to produce resistant cultivars with a gene-editing approac

    Grapevine DMR6-1 Is a Candidate Gene for Susceptibility to Downy mildew

    Get PDF
    Grapevine (Vitis vinifera) is a valuable crop in Europe for both economical and cultural reasons, but highly susceptible to Downy mildew (DM). The generation of resistant vines is of critical importance for a sustainable viticulture and can be achieved either by introgression of resistance genes in susceptible varieties or by mutation of Susceptibility (S) genes, e.g., by gene editing. This second approach offers several advantages: it maintains the genetic identity of cultivars otherwise disrupted by crossing and generally results in a broad-spectrum and durable resistance, but it is hindered by the poor knowledge about S genes in grapevines. Candidate S genes are Downy mildew Resistance 6 (DMR6) and DMR6-Like Oxygenases (DLOs), whose mutations confer resistance to DM in Arabidopsis. In this work, we show that grapevine VviDMR6-1 complements the Arabidopsis dmr6-1 resistant mutant. We studied the expression of grapevine VviDMR6 and VviDLO genes in different organs and in response to the DM causative agent Plasmopara viticola. Through an automated evaluation of causal relationships among genes, we show that VviDMR6-1, VviDMR6-2, and VviDLO1 group into different co-regulatory networks, suggesting distinct functions, and that mostly VviDMR6-1 is connected with pathogenesis-responsive genes. Therefore, VviDMR6-1 represents a good candidate to produce resistant cultivars with a gene-editing approach

    Systemic PFOS and PFOA exposure and disturbed lipid homeostasis in humans: what do we know and what not?

    Get PDF
    Associations between per- and polyfluoroalkyl substances (PFASs) and increased blood lipids have been repeatedly observed in humans, but a causal relation has been debated. Rodent studies show reverse effects, i.e. decreased blood cholesterol and triglycerides, occurring however at PFAS serum levels at least 100-fold higher than those in humans. This paper aims to present the main issues regarding the modulation of lipid homeostasis by the two most common PFASs, PFOS and PFOA, with emphasis on the underlying mechanisms relevant for humans. Overall, the apparent contrast between human and animal data may be an artifact of dose, with different molecular pathways coming into play upon exposure to PFASs at very low versus high levels. Altogether, the interpretation of existing rodent data on PFOS/PFOA-induced lipid perturbations with respect to the human situation is complex. From a mechanistic perspective, research on human liver cells shows that PFOS/PFOA activate the PPARα pathway, whereas studies on the involvement of other nuclear receptors, like PXR, are less conclusive. Other data indicate that suppression of the nuclear receptor HNF4α signaling pathway, as well as perturbations of bile acid metabolism and transport might be important cellular events that require further investigation. Future studies with human-relevant test systems would help to obtain more insight into the mechanistic pathways pertinent for humans. These studies shall be designed with a careful consideration of appropriate dosing and toxicokinetics, so as to enable biologically plausible quantitative extrapolations. Such research will increase the understanding of possible perturbed lipid homeostasis related to PFOS/ PFOA exposure and the potential implications for human health

    Risk for animal and human health related to the presence of dioxins and dioxin-like PCBs in feed and food

    Get PDF
    EFSA wishes to thank the Working Group members: Manolis Kogevinas (until 14 September 2016), George Loizou (until 23 January 2017), and the hearing experts: Matteo Bonzini, Jane Burns, Claude Emond, Aleksander Giwercman, Russ Hauser, Lidia Mínguez‐Alarcón and Paolo Mocarelli, for the support provided to this scientific output. The CONTAM Panel acknowledges all European competent institutions and other stakeholders that provided occurrence data on PCDD/Fs and DL‐PCBs in food and feed, and supported the data collection for the Comprehensive European Food Consumption Database.Peer reviewedPublisher PD
    • 

    corecore